9 research outputs found
THE INVESTIGATIONS OF THE MECHANISM OF THE DUODENUM CONTRACTIONS INTENSITY, ARISING AT THE SYMPATHETIC STEM IRRITATION
The object of investigation: the not pedigree dogs. The work is aimed at studying the mechanisms of the duodenum motor activity intensification, arising at the sympathetic stem irritation. It has been established, that the irritation of the sympathetic stem in the breast cavity of the dogs causes more often the intensification of the duodenum contractions and not the depression; the data of the reaction have been conditioned by serotonin-reactive structures of the vegetative nervous system. The revealed structure-functional peculiarities of the vegetative innervation of the duodenum shall allow to develop the new pharmacological preparations for the correction of the disorders of the small intestine motor and the treatment of the pathological processes of the gastro-duodenal zoneAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
Bispecific Antibodies for IFN-β Delivery to ErbB2+ Tumors
The main aim of our work was to create a full-length bispecific antibody (BsAb) as a vehicle for the targeted delivery of interferon-beta (IFN-β) to ErbB2+ tumor cells in the form of non-covalent complex of BsAb and IFN-β. Such a construct is a CrossMab-type BsAb, consisting of an ErbB2-recognizing trastuzumab moiety, a part of chimeric antibody to IFN-β, and human IgG1 Fc domain carrying knob-into-hole amino acid substitutions necessary for the proper assembly of bispecific molecules. The IFN-β- recognizing arm of BsAb not only forms a complex with the cytokine but neutralizes its activity, thus providing a mechanism to avoid the side effects of the systemic action of IFN-β by blocking IFN-β Interaction with cell receptors in the process of cytokine delivery to tumor sites. Enzyme sandwich immunoassay confirmed the ability of BsAb to bind to human IFN-β comparable to that of the parental chimeric mAb. The BsAb binds to the recombinant ErbB2 receptor, as well as to lysates of ErbB2+ tumor cell lines. The inhibition of the antiproliferative effect of IFN-β by BsAb (IC50 = 49,3 µg/mL) was demonstrated on the HT29 cell line. It can be proposed that the BsAb obtained can serve as a component of the immunocytokine complex for the delivery of IFN-β to ErbB2-associated tumor cells
Tooth detection and numbering in panoramic radiographs using convolutional neural networks
OBJECTIVES: Analysis of dental radiographs is an important part of the diagnostic process in daily clinical practice. Interpretation by an expert includes teeth detection and numbering. In this project, a novel solution based on convolutional neural networks (CNNs) is proposed that performs this task automatically for panoramic radiographs. METHODS: A data set of 1352 randomly chosen panoramic radiographs of adults was used to train the system. The CNN-based architectures for both teeth detection and numbering tasks were analyzed. The teeth detection module processes the radiograph to define the boundaries of each tooth. It is based on the state-of-the-art Faster R-CNN architecture. The teeth numbering module classifies detected teeth images according to the FDI notation. It utilizes the classical VGG-16 CNN together with the heuristic algorithm to improve results according to the rules for spatial arrangement of teeth. A separate testing set of 222 images was used to evaluate the performance of the system and to compare it to the expert level. RESULTS: For the teeth detection task, the system achieves the following performance metrics: a sensitivity of 0.9941 and a precision of 0.9945. For teeth numbering, its sensitivity is 0.9800 and specificity is 0.9994. Experts detect teeth with a sensitivity of 0.9980 and a precision of 0.9998. Their sensitivity for tooth numbering is 0.9893 and specificity is 0.9997. The detailed error analysis showed that the developed software system makes errors caused by similar factors as those for experts. CONCLUSIONS: The performance of the proposed computer-aided diagnosis solution is comparable to the level of experts. Based on these findings, the method has the potential for practical application and further evaluation for automated dental radiograph analysis. Computer-aided teeth detection and numbering simplifies the process of filling out digital dental charts. Automation could help to save time and improve the completeness of electronic dental records.status: publishe
Iron Deficiency in Cyanobacteria Causes Monomerization of Photosystem I Trimers and Reduces the Capacity for State Transitions and the Effective Absorption Cross Section of Photosystem I in Vivo
The induction of the isiA (CP43′) protein in iron-stressed cyanobacteria is accompanied by the formation of a ring of 18 CP43′ proteins around the photosystem I (PSI) trimer and is thought to increase the absorption cross section of PSI within the CP43′-PSI supercomplex. In contrast to these in vitro studies, our in vivo measurements failed to demonstrate any increase of the PSI absorption cross section in two strains (Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803) of iron-stressed cells. We report that iron-stressed cells exhibited a reduced capacity for state transitions and limited dark reduction of the plastoquinone pool, which accounts for the increase in PSII-related 685 nm chlorophyll fluorescence under iron deficiency. This was accompanied by lower abundance of the NADP-dehydrogenase complex and the PSI-associated subunit PsaL, as well as a reduced amount of phosphatidylglycerol. Nondenaturating polyacrylamide gel electrophoresis separation of the chlorophyll-protein complexes indicated that the monomeric form of PSI is favored over the trimeric form of PSI under iron stress. Thus, we demonstrate that the induction of CP43′ does not increase the PSI functional absorption cross section of whole cells in vivo, but rather, induces monomerization of PSI trimers and reduces the capacity for state transitions. We discuss the role of CP43′ as an effective energy quencher to photoprotect PSII and PSI under unfavorable environmental conditions in cyanobacteria in vivo
“Struggle” between three switching mechanisms as the underpinning of sleep stages and the pattern of transition between them
Complex systems are occasionally switching between several qualitatively different modes of behavior, even in the absence of external influences. An example of such mode-switching behavior of a complex system is a sequence of changes in sleep stages observed on approximately 90-min interval of sleep cycle. We examined whether relatively stable stages and relatively rapid transitions between them can be linked to the observed markers of underlying processes of sleep–wake regulation. Using data on two napping attempts of each of 28 university students, we described how scores on principal components of the EEG spectrum and rates of transitions between stages can serve as objective markers of interaction between three underlying on–off switching mechanisms that, in turn, can reflect strengths of the mutually inhibiting drives for sleep, wake, and REM sleep. A sequence of transitions between five stages over sleep cycle can be viewed as representing a sequence of episodes of the “struggle” between these three permanently competing mechanisms. Each of typical stage transitions in sleep cycle can be interpreted as a relatively rapid change in state of one or two of these three on–off switchers. It seems that only one of them is capable to maintain the switch on state during a stage with the exception of transient stage 1 sleep during which all switches remain in switch off state. An aim of future research of stages and their transitions during normal and disturbed sleep can be aimed on identification of a switching mechanism involved into a certain disturbance of sleep
The Irrecoverable Loss in Sleep on Weekdays of Two Distinct Chronotypes Can Be Equalized by Permitting a >2 h Difference in Waking Time
Background: Our work/study culture is biased towards the circadian clocks of “morning types”, whereas “evening types” are forced to advance their weekday waking times relative to weekend waking times. Since the experimental research consistently reveals a >2 h difference between these two chronotypes in the positions of their endogenous circadian phases, we hypothesized the necessity to permit a >2 h difference between them in weekday waking times to equalize their irrecoverable loss in sleep on weekdays. Methods: A total of 659 and 1106 participants of online surveys identified themselves as morning and evening types, respectively. The hypothesis was tested by applying a model of sleep–wake regulation for simulating sleep times reported by 245 lecturers of these two types, and by comparison of sleep times of these types among these lecturers and 1520 students. Results: The hypothesis was supported by results showing that, if, on weekdays, an “average” morning type wakes at 6 a.m., the equalization of the weekday sleep loss of the two chronotypes would require the waking time of an “average” evening type to be no earlier than 8 a.m. Conclusions: These results may be implemented in a model-based methodology for the correction of weekday waking times to equalize weekday sleep loss