62 research outputs found

    Glutamate 270 plays an essential role in K activation and domain closure of Thermus thermophilus isopropylmalate dehydrogenase

    Get PDF
    The mutant E270A of Thermus thermophilus 3-isopropylmalate dehydrogenase exhibits largely reduced (∼1%) catalytic activity and negligible activation by K+ compared to the wild-type enzyme. A 3–4 kcal/mol increase in the activation energy of the catalysed reaction upon this mutation could also be predicted by QM/MM calculations. In the X-ray structure of the E270A mutant a water molecule was observed to take the place of K+. SAXS and FRET experiments revealed the essential role of E270 in stabilisation of the active domain-closed conformation of the enzyme. In addition, E270 seems to position K+ into close proximity of the nicotinamide ring of NAD+ and the electron-withdrawing effect of K+ may help to polarise the aromatic ring in order to aid the hydride-transfer

    Sterols sense swelling in lipid bilayers

    Full text link
    In the mimetic membrane system of phosphatidylcholine bilayers, thickening (pre-critical behavior, anomalous swelling) of the bilayers is observed, in the vicinity of the main transition, which is non-linear with temperature. The sterols cholesterol and androsten are used as sensors in a time-resolved simultaneous small- and wide angle x-ray diffraction study to investigate the cause of the thickening. We observe precritical behavior in the pure lipid system, as well as with sterol concentrations less than 15%. To describe the precritical behavior we introduce a theory of precritical phenomena.The good temperature resolution of the data shows that a theory of the influence of fluctuations needs modification. The main cause of the critical behavior appears to be a changing hydration of the bilayer.Comment: 11 pages, 7 ps figures included, to appear in Phys.Rev.

    "4D Biology for health and disease" workshop report

    Get PDF
    The "4D Biology Workshop for Health and Disease", held on 16-17th ofMarch 2010 in Brussels, aimed at finding the best organising principlesfor large-scale proteomics, interactomics and structural genomics/biology initiatives, and setting the vision for future high-throughputresearch and large-scale data gathering in biological and medical science.Major conclusions of the workshop include the following. (i)Development of new technologies and approaches to data analysis iscrucial. Biophysical methods should be developed that span a broadrange of time/spatial resolution and characterise structures andkinetics of interactions. Mathematics, physics, computational andengineering tools need to be used more in biology and new tools needto be developed. (ii) Database efforts need to focus on improveddefinitions of ontologies and standards so that system-scale data andassociated metadata can be understood and shared efficiently. (iii)Research infrastructures should play a key role in fosteringmultidisciplinary research, maximising knowledge exchange betweendisciplines and facilitating access to diverse technologies. (iv)Understanding disease on a molecular level is crucial. Systemapproaches may represent a new paradigm in the search for biomarkersand new targets in human disease. (v) Appropriate education andtraining should be provided to help efficient exchange of knowledgebetween theoreticians, experimental biologists and clinicians. Theseconclusions provide a strong basis for creating major possibilities inadvancing research and clinical applications towards personalisedmedicine.Biophysical Structural Chemistr

    Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes

    No full text
    Membranes of Gram-negative bacteria, mitochondria and chloroplasts receive and fold β-barrel transmembrane proteins through the action of polypeptide transport-associated (POTRA) domains. In Escherichia coli, folding substrates are inserted into the outer membrane by the essential protein YaeT, a prototypic Omp85 protein. Here, the articulation between tandem POTRA domains in solution is defined by nuclear magnetic resonance (NMR) spectroscopy, indicating an unprecedented juxtaposition. The novel solution orientations of all five POTRA domains are revealed by small-angle X-ray scattering of the entire 46 kDa periplasmic region. NMR titration studies show that strands from YaeT's canonical folding substrate, PhoE, bind non-specifically along alternating sides of its mixed β sheets, thus providing an ideal platform for helping to fold nascent outer-membrane proteins. Together, this provides the first structural model of how multiple POTRA domains recruit substrates from the periplasmic solution into the outer membrane
    • …
    corecore