407 research outputs found

    A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport

    Full text link
    We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density SI(f)S_I (f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher ff, there is a crossover to a broad range of frequencies in which SI(f)S_I (f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor F\equiv S_I(f)/2e \left. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F=1), scaling with the length LL of the conductor as F=(Lc/L)αF = (L_c / L)^{\alpha}. The exponent α\alpha is significantly affected by the Coulomb interaction effects, changing from α=0.76±0.08\alpha = 0.76 \pm 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter LcL_c, interpreted as the average percolation cluster length along the electric field direction, scales as LcE(0.98±0.08)L_c \propto E^{-(0.98 \pm 0.08)} when Coulomb interaction effects are negligible and LcE(1.26±0.15)L_c \propto E^{-(1.26 \pm 0.15)} when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference

    A Numerical Study of Transport and Shot Noise at 2D Hopping

    Full text link
    We have used modern supercomputer facilities to carry out extensive Monte Carlo simulations of 2D hopping (at negligible Coulomb interaction) in conductors with the completely random distribution of localized sites in both space and energy, within a broad range of the applied electric field EE and temperature TT, both within and beyond the variable-range hopping region. The calculated properties include not only dc current and statistics of localized site occupation and hop lengths, but also the current fluctuation spectrum. Within the calculation accuracy, the model does not exhibit 1/f1/f noise, so that the low-frequency noise at low temperatures may be characterized by the Fano factor FF. For sufficiently large samples, FF scales with conductor length LL as (Lc/L)α(L_c/L)^{\alpha}, where α=0.76±0.08<1\alpha=0.76\pm 0.08 < 1, and parameter LcL_c is interpreted as the average percolation cluster length. At relatively low EE, the electric field dependence of parameter LcL_c is compatible with the law LcE0.911L_c\propto E^{-0.911} which follows from directed percolation theory arguments.Comment: 17 pages, 8 figures; Fixed minor typos and updated reference

    Cardiovascular outcomes of cancer patients in rural Australia

    Get PDF
    BackgroundCancer and heart disease are the two most common health conditions in the world, associated with high morbidity and mortality, with even worse outcomes in regional areas. Cardiovascular disease is the leading cause of death in cancer survivors. We aimed to evaluate the cardiovascular outcomes of patients receiving cancer treatment (CT) in a regional hospital.MethodsThis was an observational retrospective cohort study in a single rural hospital over a ten-year period (17th February 2010 to 19th March 2019). Outcomes of all patients receiving CT during this period were compared to those who were admitted to the hospital without a cancer diagnosis.Results268 patients received CT during the study period. High rates of cardiovascular risk factors: hypertension (52.2%), smoking (54.9%), and dyslipidaemia (38.4%) were observed in the CT group. Patients who had CT were more likely to be readmitted with ACS (5.9% vs. 2.8% p = 0.005) and AF (8.2% vs. 4.5% p = 0.006) when compared to the general admission cohort. There was a statistically significant difference observed for all cause cardiac readmission, with a higher rate observed in the CT group (17.1% vs. 13.2% p = 0.042). Patients undergoing CT had a higher rate of mortality (49.5% vs. 10.2%, p ≤ 0.001) and shorter time (days) from first admission to death (401.06 vs. 994.91, p ≤ 0.001) when compared to the general admission cohort, acknowledging this reduction in survival may be driven at least in part by the cancer itself.ConclusionThere is an increased incidence of adverse cardiovascular outcomes, including higher readmission rate, higher mortality rate and shorter survival in people undergoing cancer treatment in rural environments. Rural cancer patients demonstrated a high burden of cardiovascular risk factors

    Sub-electron Charge Relaxation via 2D Hopping Conductors

    Full text link
    We have extended Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the process of external charge relaxation. In this situation, a conductor of area L×WL \times W shunts an external capacitor CC with initial charge QiQ_i. At low temperatures, the charge relaxation process stops at some "residual" charge value corresponding to the effective threshold of the Coulomb blockade of hopping. We have calculated the r.m.s.. value QRQ_R of the residual charge for a statistical ensemble of capacitor-shunting conductors with random distribution of localized sites in space and energy and random QiQ_i, as a function of macroscopic parameters of the system. Rather unexpectedly, QRQ_{R} has turned out to depend only on some parameter combination: X0LWν0e2/CX_0 \equiv L W \nu_0 e^2/C for negligible Coulomb interaction and XχLWκ2/C2X_{\chi} \equiv LW \kappa^2/C^{2} for substantial interaction. (Here ν0\nu_0 is the seed density of localized states, while κ\kappa is the dielectric constant.) For sufficiently large conductors, both functions QR/e=F(X)Q_{R}/e =F(X) follow the power law F(X)=DXβF(X)=DX^{-\beta}, but with different exponents: β=0.41±0.01\beta = 0.41 \pm 0.01 for negligible and β=0.28±0.01\beta = 0.28 \pm 0.01 for significant Coulomb interaction. We have been able to derive this law analytically for the former (most practical) case, and also explain the scaling (but not the exact value of the exponent) for the latter case. In conclusion, we discuss possible applications of the sub-electron charge transfer for "grounding" random background charge in single-electron devices.Comment: 12 pages, 5 figures. In addition to fixing minor typos and updating references, the discussion has been changed and expande

    Structural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene

    Full text link
    We have measured depolarized light scattering in liquid benzene over the whole accessible temperature range and over four decades in frequency. Between 40 and 180 GHz we find a susceptibility peak due to structural relaxation. This peak shows stretching and time-temperature scaling as known from α\alpha relaxation in glass-forming materials. A simple mode-coupling model provides consistent fits of the entire data set. We conclude that structural relaxation in simple liquids and α\alpha relaxation in glass-forming materials are physically the same. A deeper understanding of simple liquids is reached by applying concepts that were originally developed in the context of glass-transition research.Comment: submitted to New J. Phy

    Vibrations of the low energy states of toluene ( X(1-A-1) and A(1-B-2) and the toluene cation (X+(2-B-1)

    Get PDF
    We commence by presenting an overview of the assignment of the vibrational frequencies of the toluene molecule in its ground (S0) state. The assignment given is in terms of a recently-proposed nomenclature, which allows the ring-localized vibrations to be compared straightforwardly across different monosubstituted benzenes. The frequencies and assignments are based on a range of previous work, but also on calculated wavenumbers for both the fully hydrogenated (toluene-h8) and the deuterated-methyl group isotopologue (3-toluene-d3), obtained from density functional theory (DFT), including artifical-isotope shifts. For the S1 state, one-colour resonance-enhanced multiphoton ionization (REMPI) spectroscopy was employed, with the vibrational assignments also being based on previous work and time-dependent density functional theory (TDDFT) calculated values; but also making use of the activity observed in two-colour zero-kinetic-energy (ZEKE) spectroscopy. The ZEKE experiments were carried out employing a (1 + 1) ionization scheme, using various vibrational levels of the S1 state with an energy < 630 cm 1 as intermediates; as such we only discuss in detail the assignment of the REMPI spectra at wavenumbers < 700 cm 1, referring to the assignment of the ZEKE spectra concurrently. Comparison of the ZEKE spectra for the two toluene isotopologues, as well as with previously-reported dispersed-fluorescence spectra, and with the results of density functional theory (DFT) calculations, provide insight both into the assignment of the vibrations in the S1 and D0+ states, as well as the couplings between these vibrations. In particular, insight into the nature of a complicated Fermi resonance feature at ~ 460 cm 1 in the S1 state is obtained, and Fermi resonances in the cation are identified. Finally, we compare activity observed in both REMPI and ZEKE spectroscopy for both toluene isotopologues with that for fluorobenzene and chlorobenzene

    Spacelike distance from discrete causal order

    Get PDF
    Any discrete approach to quantum gravity must provide some prescription as to how to deduce continuum properties from the discrete substructure. In the causal set approach it is straightforward to deduce timelike distances, but surprisingly difficult to extract spacelike distances, because of the unique combination of discreteness with local Lorentz invariance in that approach. We propose a number of methods to overcome this difficulty, one of which reproduces the spatial distance between two points in a finite region of Minkowski space. We provide numerical evidence that this definition can be used to define a `spatial nearest neighbor' relation on a causal set, and conjecture that this can be exploited to define the length of `continuous curves' in causal sets which are approximated by curved spacetime. This provides evidence in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio
    corecore