93 research outputs found
Load magnitude affects patellar tendon mechanical properties but not collagen or collagen cross-linking after long-term strength training in older adults
Abstract Background Regular loading of tendons may counteract the negative effects of aging. However, the influence of strength training loading magnitude on tendon mechanical properties and its relation to matrix collagen content and collagen cross-linking is sparsely described in older adults. The purpose of the present study was to compare the effects of moderate or high load resistance training on tendon matrix and its mechanical properties. Methods Seventeen women and 19 men, age 62â70âyears, were recruited and randomly allocated to 12âmonths of heavy load resistance training (HRT), moderate load resistance training (MRT) or control (CON). Pre- and post-intervention testing comprised isometric quadriceps strength test (IsoMVC), ultrasound based testing of in vivo patellar tendon (PT) mechanical properties, MRI-based measurement of PT cross-sectional area (CSA), PT biopsies for assessment of fibril morphology, collagen content, enzymatic cross-links, and tendon fluorescence as a measure of advanced glycation end-products (AGEs). Results Thirty three participants completed the intervention and were included in the data analysis. IsoMVC increased more after HRT (+â21%) than MRT (+â8%) and CON (+â7%) (pâ<â0.05). Tendon stiffness (pâ<â0.05) and Youngâs modulus (pâ=â0.05) were also differently affected by training load with a reduction in CON and MRT but not in HRT. PT-CSA increased equally after both MRT and HRT. Collagen content, fibril morphology, enzymatic cross-links, and tendon fluorescence were unaffected by training. Conclusion Despite equal improvements in tendon size after moderate and heavy load resistance training, only heavy. load training seemed to maintain tendon mechanical properties in old age. The effect of load magnitude on tendon biomechanics was unrelated to changes of major load bearing matrix components in the tendon core. The study is a sub-study of the LISA study, which was registered at http://clinicaltrials.gov (NCT02123641) April 25th 2014
An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon
Advanced Glycation Endproducts (AGEs) accumulate in longâlived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated the relationship between AGE content in the diet and accumulation of AGEs in weightâbearing animal Achilles tendon. Two groups of mice (C57BL/6Ntac) were fed with either highâfat diet low in AGEs highâfat diet (HFD) (n = 14) or normal diet high in AGEs (ND) (n = 11). AGE content in ND was six to 50âfold higher than HFD. The mice were sacrificed at week 40 and Achilles and tail tendons were carefully excised to compare weight and nonweightâbearing tendons. The amount of the AGEs carboxymethyllysine (CML), methylglyoxalâderived hydroimidazolone (MGâH1) and carboxyethyllysine (CEL) in Achilles and tail tendon was measured using ultraperformance liquid chromatography tandem mass spectrometry (UPLCâMS/MS) and pentosidine with highâpressure liquid chromatography (HPLC) with fluorescent detection. AGEs in Achilles tendon were higher than in tail tendon for CML (P < 0.0001), CEL (P < 0.0001), MGâH1 and pentosidine (for both ND and HFD) (P < 0.0001). The AGEârich diet (ND) resulted in an increase in CML (P < 0.0001), MGâH1 (P < 0.001) and pentosidine (P < 0.0001) but not CEL, in Achilles and tail tendon. This is the first study to provide evidence for AGE accumulation in injuryâprone, weightâbearing Achilles tendon associated with intake of an AGEârich diet. This indicates that foodâderived AGEs may alter tendon properties and the development of tendon injuries
Philosophy of Law in the Arctic
This is rather the first book with a title Philosophy of Law in the Arctic in the literature. This philosophy of law is a very wide and cross-disciplinary area of research: between law, philosophy, anthropology, history, cultural ecology or environmental studies. I have no doubts that we have done such kind of philosophy in the academia so far, not using this term, but keeping up with the concept, the idea.
The book is a result of research conducted by many members of the Sub-group of Philosophy of Law in the Arctic (the University of the Arctic). This team seems a very interdisciplinary academic group. Our cooperation bears fruit.
The aim of the book is to define and systematise Arctic legal philosophy problems. In this book, there are five thematic parts. Each part consists of two-five short articles (we can call them also chapters or papers). These are the sixteen short articles all together. Each article consists of between six and fourteen pages. So going further, what we see in the book then is, in fact, a set of both theoretical and practical papers. The topics of these papers (chapters) are different as the authors are different while representing a wide-ranging scope of academic disciplines or specialisations. Each paper is followed by a relevant bibliography, which might be helpful for other scholars interested in the field. The seventeen writers come from such countries as Finland (4), Norway (1), Canada (3), Poland (3), Japan (2), Austria (1), Ireland (1), and England (2). Some of them have Arctic indigenous roots (3). In the end of the book, there is a very original attachment - the map of Arctic Canada.https://digitalcommons.schulichlaw.dal.ca/faculty_books/1052/thumbnail.jp
Tendon collagen synthesis declines with immobilization in elderly humans:no effect of anti-inflammatory medication
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used as pain killers during periods of unloading caused by traumatic occurrences or diseases. However, it is unknown how tendon protein turnover and mechanical properties respond to unloading and subsequent reloading in elderly humans, and whether NSAID treatment would affect the tendon adaptations during such periods. Thus we studied human patellar tendon protein synthesis and mechanical properties during immobilization and subsequent rehabilitating resistance training and the influence of NSAIDs upon these parameters. Nineteen men (range 60â80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased ( P < 0.001), whereas tendon mechanical properties and size were generally unchanged with immobilization, and NSAIDs did not influence this. Matrix metalloproteinase-2 mRNA tended to increase ( P < 0.1) after immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only ( P < 0.05). In elderly human tendons, collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this. This indicates an importance of mechanical loading for maintenance of tendon collagen turnover. However, reduced collagen production induced by short-term unloading may only marginally affect tendon mechanical properties in elderly individuals.NEW & NOTEWORTHY In elderly humans, 2 wk of inactivity reduces tendon collagen protein synthesis, while tendon stiffness and modulus are only marginally reduced, and NSAID treatment does not affect this. This indicates that mechanical loading is important for maintenance of tendon collagen turnover and that changes in collagen turnover induced by short-term immobilization may only have minor impact on the internal structures that are essential for mechanical properties in elderly tendons.</jats:p
The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2
Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
Fracture mechanics of collagen fibrils
AbstractTendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH4 reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human collagen fibrils. There was an initial rise in modulus followed by a plateau with reduced modulus, which was finally followed by an even greater increase in stress and modulus before failure. The RTTs also displayed the initial increase and plateau phase, but the third region was virtually absent and the plateau continued until failure. The importance of cross-link lability was investigated by NaBH4 reduction of the rat-tail fibrils, which did not alter their behavior. These findings shed light on the function of cross-links at the fibril level, but further studies will be required to establish the underlying mechanisms
- âŠ