48 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The Templeton Crocker Expedition of the California Academy of Sciences, 1932. No. 37. The Cyperaceae

    No full text
    Volume: 22Start Page: 187End Page: 19

    WESTERN CAPE COD PLANT NOTES

    No full text
    Volume: 72Start Page: 1End Page: 1

    Monographic Studies in the Genus Eleocharis - II (concluded)

    No full text
    Volume: 34Start Page: 215End Page: 22

    The Eleocharis obtusa-ovata complex

    No full text
    Volume: 55Start Page: 1End Page:

    Flora of Panama. Part II. Fascicle II

    No full text
    Volume: 30Start Page: 281End Page: 40

    The group of Eleocharis palustris in North America

    No full text
    Volume: 49Start Page: 61End Page: 6

    Monographic studies in the genus Eleocharis - V (continued)

    No full text
    Volume: 41Start Page: 43End Page: 7
    corecore