22 research outputs found

    Epstein–Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-κB pathway

    Get PDF
    The Epstein–Barr virus (EBV)-encoded latent membrane protein-1 (LMP1), a functional homologue of the tumor necrosis factor receptor family, substantially contributes to EBV's oncogenic potential by activating nuclear factor-κB (NF-κB). miR-155 is an oncogenic miRNA critical for B-cell maturation and immunoglobulin production in response to antigen. We report that miR-155 expression is much higher in EBV-immortalized B cells than in EBV-negative B cells. LMP1, but not LMP2, up-regulated the expression of miR-155, when transfected in EBV-negative B cells. We analyzed two putative NF-κB binding sites in the miR-155 promoter; both sites recruited NF-κB complex, in nuclear extract from EBV-immortalized cells. The exogenous expression of LMP1, in EBV-negative background, is temporally correlated to induction of p65 with binding on both NF-κB sites and with miR-155 overexpression. The induction of p65 binding together with increased RNA polymerase II binding, confirms that LMP1-mediated activation of miR-155 occurs transcriptionally. In reporter assays, miR-155 promoter lacking NF-κB binding sites was no longer activated by LMP1 expression and an intact AP1 site is needed to attain maximum activation. Finally, we demonstrate that LMP1-mediated activation of miR-155 in an EBV-negative background correlates with reduction of protein PU.1, which is a possible miR target

    Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    No full text
    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009; doi:10.1152/ajprenal.00528.2009.-Tubular epithelial cells secrete connective tissue growth factor (CTGF, CCN2), which contributes to tubulointerstitial fibrosis. However, the molecular regulation of CTGF in human primary tubular epithelial cells (hPTECs) is not well defined. Therefore, CTGF expression was characterized in hPTECs isolated from healthy parts of tumor nephrectomies, with special emphasis on the regulation by transforming growth factor-beta (TGF-beta) and hypoxia, essential factors in the development of fibrosis. CTGF synthesis was strongly dependent on cell density. High CTGF levels were detected in sparse cells, whereas CTGF expression was reduced in confluent cells. Concomitantly, stimulation of CTGF by TGF-beta or the histone deacetylase inhibitor trichostatin was prevented in dense cells. Exposure of hPTECs to low oxygen tension (1% O-2) or the hypoxia mimetic dimethyl-oxalylglycine for 24 h reduced CTGF gene expression in most of the 17 preparations analyzed. Preincubation of the cells under hypoxic conditions significantly reduced TGF-beta-mediated upregulation of CTGF. In line with these data, CTGF mRNA was only induced in interstitial cells, but not in tubular cells in kidneys of mice exposed to hypoxia. Longer exposure to hypoxia or TGF-beta (up to 72 h) did not induce hPTECs to adopt a mesenchymal phenotype characterized by upregulation of alpha-smooth muscle actin, downregulation of E-cadherin, or increased sensitivity of the cells in terms of CTGF expression. Sensitivity was restored by inhibition of DNA methylation. Taken together, our data provide evidence that exposure to hypoxia decreased CTGF gene expression. Furthermore, hypoxia per se was not sufficient to induce a mesenchymal phenotype in primary tubular epithelial cell

    Distinct Mesenchymal Alterations in N-Cadherin and E-Cadherin Positive Primary Renal Epithelial Cells

    No full text
    Background Renal tubular epithelial cells of proximal and distal origin differ markedly in their physiological functions. Therefore, we hypothesized that they also differ in their capacity to undergo epithelial to mesenchymal alterations. Results We used cultures of freshly isolated primary human tubular cells. To distinguish cells of different tubular origin we took advantage of the fact that human proximal epithelial cells uniquely express N-cadherin instead of E-cadherin as major cell-cell adhesion molecule. To provoke mesenchymal alteration we treated these cocultures with TGF-β for up to 6 days. Within this time period, the morphology of distal tubular cells was barely altered. In contrast to tubular cell lines, E-cadherin was not down-regulated by TGF-β, even though TGF-β signal transduction was initiated as demonstrated by nuclear localization of Smad2/3. Analysis of transcription factors and miRNAs possibly involved in E-cadherin regulation revealed high levels of miRNAs of the miR200-family, which may contribute to the stability of E-cadherin expression in human distal tubular epithelial cells. By contrast, proximal tubular epithelial cells altered their phenotype when treated with TGF-β. They became elongated and formed three-dimensional structures. Rho-kinases were identified as modulators of TGF-β-induced morphological alterations. Non-specific inhibition of Rho-kinases resulted in stabilization of the epithelial phenotype, while partial effects were observed upon downregulation of Rho-kinase isoforms ROCK1 and ROCK2. The distinct reactivity of proximal and distal cells was retained when the cells were cultured as polarized cells. Conclusions Interference with Rho-kinase signaling provides a target to counteract TGF-β-mediated mesenchymal alterations of epithelial cells, particularly in proximal tubular epithelial cells. Furthermore, primary distal tubular cells differed from cell lines by their high phenotypic stability which included constant expression of E-cadherin. Our cell culture system of primary epithelial cells is thus suitable to understand and modulate cellular remodeling processes of distinct tubular cells relevant for human renal disease
    corecore