18 research outputs found

    Study of ultrathin Pt/Co/Pt trilayers modified by nanosecond XUV pulses from laser-driven plasma source

    Get PDF
    We have studied the structural mechanisms responsible for the magnetic reorientation between in-plane and out-of-plane magnetization in the (25 nm Pt)/(3 and 10 nm Co)/(3 nm Pt) trilayer systems irradiated with nanosecond XUV pulses generated with laser-driven gas-puff target plasma source of a narrow continuous spectrum peaked at wavelength of 11 nm. The thickness of individual layers, their density, chemical composition and irradiation-induced lateral strain were deduced from symmetric and asymmetric X-ray diffraction (XRD) patterns, grazing-incidence X-ray reflectometry (GIXR), grazing incidence X-ray fluorescence (GIXRF), extended X-ray absorption fine structure (EXAFS) and transmission electron microscopy (TEM) measurements. In the as grown samples we found, that the Pt buffer layers are relaxed and that the layer interfaces are sharp. As a result of a quasi-uniform irradiation of the samples, the XRD, EXAFS, GIXR and GIXRF data reveal the formation of two distinct layers composed of Pt1-xCox alloys with different Co concentrations, dependent on the thickness of the as grown magnetic Co film but with similar ∼1% lateral tensile residual strain. For smaller exposure dose (lower number of accumulated pulses) only partial interdiffusion at the interfaces takes place with the formation of a tri-layer composed of Co-Pt alloy sandwiched between thinned Pt layers, as revealed by TEM. The structural modifications are accompanied by magnetization changes, evidenced by means of magneto-optical microscopy. The difference in magnetic properties of the irradiated samples can be related to their modification in Pt1-xCox alloy composition, as the other parameters (lateral strain and alloy thickness) remain almost unchanged. The out-of-plane magnetization observed for the sample with initially 3 nm Co layer can be due to a significant reduction of demagnetization factor resulting from a lower Co concentration

    The Influence of He +

    No full text
    The influence of He+He^+ ion bombardment on magnetoresistance, magnetization reversal and domain structure of sputtered (Ni80Fe20(2nm)//Au(2nm)//Co(0.6nm)//Au(2nm))10(Ni_{80}Fe_{20}(2 nm)//Au(2 nm)//Co(0.6 nm)//Au(2 nm))_{10} multilayers was investigated. The samples were bombarded using He+He^+(30 keV) ions with fluences D varied from 101310^{13} to 3×101610^{16} He+He^+/cm2cm^{2}. With increasing D the following changes in magnetic properties were observed: (i) exponential decay of the saturation field of Co layers, (ii) progressive decrease in magnetoresistance as a result of degradation of Co layers perpendicular anisotropy, (iii) linear decrease in stripe domain period with log(D)

    The Influence of He+He^+ Ion Bombardment on Magnetic Properties of NiFe/Au/Co/Au Multilayers

    No full text
    The influence of He+He^+ ion bombardment on magnetoresistance, magnetization reversal and domain structure of sputtered (Ni80Fe20(2nm)//Au(2nm)//Co(0.6nm)//Au(2nm))10(Ni_{80}Fe_{20}(2 nm)//Au(2 nm)//Co(0.6 nm)//Au(2 nm))_{10} multilayers was investigated. The samples were bombarded using He+He^+(30 keV) ions with fluences D varied from 101310^{13} to 3×101610^{16} He+He^+/cm2cm^{2}. With increasing D the following changes in magnetic properties were observed: (i) exponential decay of the saturation field of Co layers, (ii) progressive decrease in magnetoresistance as a result of degradation of Co layers perpendicular anisotropy, (iii) linear decrease in stripe domain period with log(D)

    Electrochemical Deposition of Nanowires in Porous Alumina

    No full text
    Electrochemical deposition is a very efficient method for producing many types of modern materials. The method is not expensive and does not have a limit for sample size. In our work the preparation of Ni, Co and Fe nanowires is presented. The obtained nanowires had different diameter and length which were tunable by template porous material and time of deposition, respectively. The quality of the prepared wires was dependent also on deposition mode. The smallest wires of the diameter around 40 nm were prepared in porous anodic alumina oxide obtained from oxalic acid. The largest ones, around 120 nm, were produced in phosphoric acid. The length could be as large as the thickness of the oxide and reached up to about 1 μm. The morphology of wires was studied by atomic force microscopy and scanning electron microscopy. The magnetic characterization was done with usage of magnetic force microscopy and the Mössbauer spectroscopy. The wires show magnetization along their growth direction

    Electrochemical Deposition of Nanowires in Porous Alumina

    No full text
    Electrochemical deposition is a very efficient method for producing many types of modern materials. The method is not expensive and does not have a limit for sample size. In our work the preparation of Ni, Co and Fe nanowires is presented. The obtained nanowires had different diameter and length which were tunable by template porous material and time of deposition, respectively. The quality of the prepared wires was dependent also on deposition mode. The smallest wires of the diameter around 40 nm were prepared in porous anodic alumina oxide obtained from oxalic acid. The largest ones, around 120 nm, were produced in phosphoric acid. The length could be as large as the thickness of the oxide and reached up to about 1 μm. The morphology of wires was studied by atomic force microscopy and scanning electron microscopy. The magnetic characterization was done with usage of magnetic force microscopy and the Mössbauer spectroscopy. The wires show magnetization along their growth direction

    Ga

    No full text
    Ga+ ion irradiation-induced changes in magnetic anisotropy of a Pt/Co/Pt ultrathin film are investigated by means of the X-ray magnetic circular dichroism (XMCD) technique. A large difference in the Co orbital moment is observed between out-of-plane and in-plane directions of the film at moderate Ga+ fluences of ~1-2×1014 ions/cm2, which corresponds to the perpendicular magnetic anisotropy (PMA), while further increased fluences reduce the orbital moment difference, resulting in in-plane magnetization. In contrast, at much higher Ga+ fluences of ~5×1015 ions/cm2, at which PMA is observed again, no significant difference is found in the orbital moment of Co between out-of-plane and in-plane directions. Different origins are thus suggested for the appearance of PMA induced by the irradiation between moderate and high Ga+ fluences

    Ga+ ion irradiation-induced changes in magnetic anisotropy of a Pt/Co/Pt thin film studied by X-ray magnetic circular dichroism

    No full text
    Ga+ ion irradiation-induced changes in magnetic anisotropy of a Pt/Co/Pt ultrathin film are investigated by means of the X-ray magnetic circular dichroism (XMCD) technique. A large difference in the Co orbital moment is observed between out-of-plane and in-plane directions of the film at moderate Ga+ fluences of ~1-2×1014 ions/cm2, which corresponds to the perpendicular magnetic anisotropy (PMA), while further increased fluences reduce the orbital moment difference, resulting in in-plane magnetization. In contrast, at much higher Ga+ fluences of ~5×1015 ions/cm2, at which PMA is observed again, no significant difference is found in the orbital moment of Co between out-of-plane and in-plane directions. Different origins are thus suggested for the appearance of PMA induced by the irradiation between moderate and high Ga+ fluences
    corecore