29 research outputs found

    Gene Network Inference and Biochemical Assessment Delineates GPCR Pathways and CREB Targets in Small Intestinal Neuroendocrine Neoplasia

    Get PDF
    Small intestinal (SI) neuroendocrine tumors (NET) are increasing in incidence, however little is known about their biology. High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance network in SI-NETs. The network was confirmed to be non-random, scale-free, and highly modular. Functional analysis of gene co-expression modules revealed processes including ‘Nervous system development’, ‘Immune response’, and ‘Cell-cycle’. Importantly, gene network topology and differential expression analysis identified over-expression of the GPCR signaling regulators, the cAMP synthetase, ADCY2, and the protein kinase A, PRKAR1A. Seven CREB response element (CRE) transcripts associated with proliferation and secretion: BEX1, BICD1, CHGB, CPE, GABRB3, SCG2 and SCG3 as well as ADCY2 and PRKAR1A were measured in an independent SI dataset (n = 10 NETs; n = 8 normal preparations). All were up-regulated (p<0.035) with the exception of SCG3 which was not differently expressed. Forskolin (a direct cAMP activator, 10−5 M) significantly stimulated transcription of pCREB and 3/7 CREB targets, isoproterenol (a selective ß-adrenergic receptor agonist and cAMP activator, 10−5 M) stimulated pCREB and 4/7 targets while BIM-53061 (a dopamine D2 and Serotonin [5-HT2] receptor agonist, 10−6 M) stimulated 100% of targets as well as pCREB; CRE transcription correlated with the levels of cAMP accumulation and PKA activity; BIM-53061 stimulated the highest levels of cAMP and PKA (2.8-fold and 2.5-fold vs. 1.8–2-fold for isoproterenol and forskolin). Gene network inference and graph topology analysis in SI NETs suggests that SI NETs express neural GPCRs that activate different CRE targets associated with proliferation and secretion. In vitro studies, in a model NET cell system, confirmed that transcriptional effects are signaled through the cAMP/PKA/pCREB signaling pathway and that a SI NET cell line was most sensitive to a D2 and 5-HT2 receptor agonist BIM-53061.© 2011 Drozdov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Chromogranin A and its fragments as regulators of small intestinal neuroendocrine neoplasm proliferation.

    Get PDF
    Chromogranin A is a neuroendocrine secretory product and its loss is a feature of malignant NEN de-differentiation. We hypothesized that chromogranin A fragments were differentially expressed during NEN metastasis and played a role in the regulation of NEN proliferation.Chromogranin A mRNA (PCR) and protein (ELISA/western blot) were studied in 10 normal human mucosa, 5 enterochromaffin cell preparations, 26 small intestinal NEN primaries and 9 liver metastases. Cell viability (WST-1 assay), proliferation (bromodeoxyuridine ELISA) and expression of AKT/AKT-P (CASE ELISA/western blot) in response to chromogranin A silencing, inhibition of prohormone convertase and mTOR inhibition (RAD001/AKT antisense) as well as different chromogranin A fragments were examined in 4 SI-NEN cell lines.Chromogranin A mRNA and protein levels were increased (37-340 fold, p<0.0001) in small intestinal NENs compared to normal enterochromaffin cells. Western blot identified chromogranin A-associated processing bands including vasostatin in small intestinal NENs as well as up-regulated expression of prohormone convertase in metastases. Proliferation in small intestinal NEN cell lines was decreased by silencing chromogranin A as well as by inhibition of prohormone convertase (p<0.05). This inhibition also decreased secretion of chromogranin A (p<0.05) and 5-HT (p<0.05) as well as expression of vasostatin. Metastatic small intestinal NEN cell lines were stimulated (50-80%, p<0.05) and AKT phosphorylated (Ser473: p<0.05) by vasostatin I, which was completely reversed by RAD001 (p<0.01) and AKT antisense (p<0.05) while chromostatin inhibited proliferation (~50%, p<0.05).Chromogranin A was differentially regulated in primary and metastatic small intestinal NENs and cell lines. Chromogranin A fragments regulated metastatic small intestinal NEN proliferation via the AKT pathway indicating that CgA plays a far more complex role in the biology of these tumors than previously considered

    A water soluble tri-cationic porphyrin–EDTA conjugate induces apoptosis in human neuroendocrine tumor cell lines

    Get PDF
    In this study, a completely water soluble tri-cationic porphyrin–EDTA conjugate was synthesized. We present data demonstrating the tumoristatic effects of the novel fully water soluble cationic porphyrin TMPy3PhenEDTA-P-Cl4 in the dark, in the medullary thyroid carcinoma cell lines MTC-SK and SHER-I and weaker effects in the small intestinal neuroendocrine tumor cell line KRJ-I. In addition, cytotoxic effects were also studied in normal human fibroblasts that represent normal tissue and the results are compared to the tumor cell lines

    The Stimulatory Adenosine Receptor ADORA2B Regulates Serotonin (5-HT) Synthesis and Release in Oxygen-Depleted EC Cells in Inflammatory Bowel Disease

    No full text
    Objective: We recently demonstrated that hypoxia, a key feature of IBD, increases enterochromaffin (EC) cell 5-HT secretion, which is also physiologically regulated by the ADORA2B mechanoreceptor. Since hypoxia is associated with increased extracellular adenosine, we wanted to examine whether this nucleotide amplifies HIF-1α-mediated 5-HT secretion. Design: The effects of hypoxia were studied on IBD mucosa, isolated IBD-EC cells, isolated normal EC cells and the EC cell tumor derived cell line KRJ-1. Hypoxia (0.5% O2) was compared to NECA (adenosine agonist), MRS1754 (ADORA2B receptor antagonist) and SCH442146 (ADORA2A antagonist) on HIF signaling and 5-HT secretion. Antisense approaches were used to mechanistically evaluate EC cells in vitro. PCR and western blot were used to analyze transcript and protein levels of HIF-1α signaling and neuroendocrine cell function. An animal model of colitis was evaluated to confirm hypoxia:adenosine signaling in vivo. Results: HIF-1α is upregulated in IBD mucosa and IBD-EC cells, the majority (∼90%) of which express an activated phenotype in situ. Hypoxia stimulated 5-HT release maximally at 30 mins, an effect amplified by NECA and selectively inhibited by MRS1754, through phosphorylation of TPH-1 and activation of VMAT-1. Transient transfection with Renilla luciferase under hypoxia transcriptional response element (HRE) control identified that ADORA2B activated HIF-1α signaling under hypoxic conditions. Additional signaling pathways associated with hypoxia:adenosine included MAP kinase and CREB. Antisense approaches mechanistically confirmed that ADORA2B signaling was linked to these pathways and 5-HT release under hypoxic conditions. Hypoxia:adenosine activation which could be reversed by 5′-ASA treatment was confirmed in a TNBS-model. Conclusion: Hypoxia induced 5-HT synthesis and secretion is amplified by ADORA2B signaling via MAPK/CREB and TPH-1 activation. Targeting ADORA2s may decrease EC cell 5-HT production and secretion in IBD

    Gene network inference and biochemical assessment delineates GPCR pathways and CREB targets in small intestinal neuroendocrine neoplasia.

    Get PDF
    Small intestinal (SI) neuroendocrine tumors (NET) are increasing in incidence, however little is known about their biology. High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance network in SI-NETs. The network was confirmed to be non-random, scale-free, and highly modular. Functional analysis of gene co-expression modules revealed processes including 'Nervous system development', 'Immune response', and 'Cell-cycle'. Importantly, gene network topology and differential expression analysis identified over-expression of the GPCR signaling regulators, the cAMP synthetase, ADCY2, and the protein kinase A, PRKAR1A. Seven CREB response element (CRE) transcripts associated with proliferation and secretion: BEX1, BICD1, CHGB, CPE, GABRB3, SCG2 and SCG3 as well as ADCY2 and PRKAR1A were measured in an independent SI dataset (n = 10 NETs; n = 8 normal preparations). All were up-regulated (p<0.035) with the exception of SCG3 which was not differently expressed. Forskolin (a direct cAMP activator, 10(-5) M) significantly stimulated transcription of pCREB and 3/7 CREB targets, isoproterenol (a selective ß-adrenergic receptor agonist and cAMP activator, 10(-5) M) stimulated pCREB and 4/7 targets while BIM-53061 (a dopamine D(2) and Serotonin [5-HT(2)] receptor agonist, 10(-6) M) stimulated 100% of targets as well as pCREB; CRE transcription correlated with the levels of cAMP accumulation and PKA activity; BIM-53061 stimulated the highest levels of cAMP and PKA (2.8-fold and 2.5-fold vs. 1.8-2-fold for isoproterenol and forskolin). Gene network inference and graph topology analysis in SI NETs suggests that SI NETs express neural GPCRs that activate different CRE targets associated with proliferation and secretion. In vitro studies, in a model NET cell system, confirmed that transcriptional effects are signaled through the cAMP/PKA/pCREB signaling pathway and that a SI NET cell line was most sensitive to a D(2) and 5-HT(2) receptor agonist BIM-53061

    Microencapsulation of small intestinal neuroendocrine neoplasm cells for tumor model studies

    No full text
    Basic cancer research is dependent on reliable in vitro and in vivo tumor models. The serotonin (5‐HT) producing small intestinal neuroendocrine tumor cell line KRJ‐1 has been used in in vitro proliferation and secretion studies, but its use in in vivo models has been hampered by problems related to the xeno‐barrier and tumor formation. This may be overcome by the encapsulation of tumor cells into alginate microspheres, which can function as bioreactors and protect against the host immune system. We used alginate encapsulation of KRJ‐1 cells to achieve long‐term functionality, growth and survival. Different conditions, including capsule size, variations in M/G content, gelling ions (Ca2+/Ba2+) and microcapsule core properties, and variations in KRJ‐1 cell condition (single cells/spheroids) were tested. Viability and cell growth was evaluated with MTT, and confocal laser scanner microscopy combined with LIVE/DEAD viability stains. 5‐HT secretion was measured to determine functionality. Under all conditions, single cell encapsulation proved unfavorable due to gradual cell death, while encapsulation of aggregates/spheroids resulted in surviving, functional bioreactors. The most ideal spheroids for encapsulation were 200–350 μm. Long‐term survival (>30 days) was seen with solid Ca2+/Ba2+ microbeads and hollow microcapsules. Basal 5‐HT secretion was increased (sixfold) after hollow microcapsule encapsulation, while Ca2+/Ba2+ microbeads was associated with normal basal secretion and responsiveness to cAMP/PKA activation. In conclusion, encapsulation of KRJ‐1 cells into hollow microcapsules produces a bioreactor with a high constitutively activate basal 5‐HT secretion, while Ca2+/Ba2+ microbeads provide a more stable bioreactor similar to non‐encapsulated cells. Alginate microspheres technology can thus be used to tailor different functional bioreactors for both in vitro and in vivo studies. (Cancer Sci 2012; 103: 1230–1237)

    Comparison of PCR-based detection of chromogranin A mRNA with traditional histological lymph node staging of small intestinal neuroendocrine neoplasia

    No full text
    Abstract Background Accurate neuroendocrine neoplasia (NEN) staging is vital for determining prognosis and therapeutic strategy. The great majority of NENs express chromogranin A (CgA) which can be detected at a protein or transcript level. The current standards for lymph node metastasis detection are histological examination after Hematoxylin and Eosin (H&E) and CgA immunohistochemical (IHC) staining. We hypothesized that detection of CgA mRNA transcripts would be a more sensitive method of detecting these metastases. Findings We compared these traditional methods with PCR for CgA mRNA extracted from formalin fixed paraffin embedded slides of lymph nodes (n = 196) from small intestinal NENs, other gastrointestinal cancers and benign gastrointestinal disease. CgA PCR detected significantly more NEN lymph nodes (75%) than H&E (53%) or CgA IHC (57%) (p = 0.02). PCR detected CgA mRNA in 50% (14 of the 28) of SI-NEN lymph nodes previously considered negative. The false positive rate for detection of CgA mRNA was 19% in non-neuroendocrine cancers, and appeared to be due to occult neuroendocrine differentiation or contamination by normal epithelium during histological processing. Conclusions Molecular pathological analysis demonstrates the limitations of observer-dependent histopathology. CgA PCR analysis detected the presence of CgA transcripts in lymph nodes without histological evidence of tumor metastasis. Molecular node positivity (stage molN1) of SI-NEN lymph nodes could confer greater staging accuracy and facilitate early and accurate therapeutic intervention. This technique warrants investigation using clinically annotated tumor samples with follow-up data.</p
    corecore