41 research outputs found

    Proteome level changes in the root of Brassica alboglabra induced by alachlor herbicide

    Get PDF
    Chinese kale (Brassica alboglabra) is a famous and extensively grown vegetable in Southeast Asia. Despite its nutritional values, pesticides are heavily applied to it. In this study, changes in protein expression due to alachlor treatment on B. alboglabra were investigated by using the 2-dimensional PAGE. Differential protein expressions were determined by using Image Master Software with volume (%) â‰Ĩ2 fold as significant. Ten spots of interest have been identified by LC/MS/MS showing significant increases in differential protein expression between B. alboglabra roots treated with alachlor as compared to the untreated group which include HSC-cognate binding proteins, adenosylmethionine synthetase and beta-tubulin involved in defence mechanism in plants. Little is known about the function of other proteins identified which include knox-like proteins and hypothetical protein. Further investigations on plant proteomics would provide more information on the effects of different types of pesticides.Keywords: Brassica alboglabra, pesticides, proteomics, two-dimensional electrophoresisAfrican Journal of Biotechnology Vol. 12(20), pp. 2840-284

    Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Zearalenone (ZEA) is a phytoestrogen from <it>Fusarium </it>species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved.</p> <p>Methods</p> <p>Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs) was performed by using 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC) and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC) substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE) coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) approach.</p> <p>Results</p> <p>ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29), 78 kDa glucose-regulated protein, heat shock protein 90 and calreticulin, whereas only <it>ERp29 </it>mRNA transcript increased.</p> <p>Conclusion</p> <p>ZEA induced human leukemic cell apoptosis via endoplasmic stress and mitochondrial pathway.</p

    Bioscience and its impact on developing countries: A view from Thailand

    No full text

    Hydrolysis of Soybean Isoflavonoid Glycosides by Dalbergia B-Glucosidases

    No full text
    āļŦāļ™āļķāđˆāļ‡āļ­āļēāļˆāļēāļĢāļĒāđŒāļŦāļ™āļķāđˆāļ‡āļœāļĨāļ‡āļēāļ™ āļ›āļĢāļ°āļˆāļģāļ›āļĩ 255

    Mutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase A

    No full text
    āļŦāļ™āļķāđˆāļ‡āļ­āļēāļˆāļēāļĢāļĒāđŒāļŦāļ™āļķāđˆāļ‡āļœāļĨāļ‡āļēāļ™ āļ›āļĢāļ°āļˆāļģāļ›āļĩ 255

    Purification, crystallization and preliminary x-ray analysis of rice BGlu1 B-glucosidase with and without 2-deoxy-2fluoro-B-D-glucoside

    No full text
    āđ‚āļ„āļĢāļ‡āļāļēāļĢāļŦāļ™āļķāđˆāļ‡āļ­āļēāļˆāļēāļĢāļĒāđŒāļŦāļ™āļķāđˆāļ‡āļœāļĨāļ‡āļēāļ™ āļ›āļĢāļ°āļˆāļģāļ›āļĩ 254

    Enhancement of Migration and Invasion of Gastric Cancer Cells by IQGAP3

    No full text
    Although gastric cancer is one of the most common causes of cancer death in the world, mechanisms underlying this type of tumor have not been fully understood. In this study, we found that IQGAP3, a member of the IQGAP gene family, was significantly up-regulated in human gastric cancer starting from the early stages of tumor progression. Overexpression of IQGAP3 in 293T and NIH3T3 cells, which have no endogenous IQGAP3 expression, resulted in morphological change with multiple dendritic-like protrusions and enhanced migration. Overexpression of IQGAP3 also led to reduced cell&ndash;cell adhesion in 293T cells, likely as a result of its interactions with e-cadherin or &beta;-catenin proteins. Additionally, IQGAP3 accumulated along the leading edge of migrating cells and at the cleavage furrow of dividing cells. In contrast, suppression of IQGAP3 by short-interfering RNA (siRNA) markedly reduced invasion and anchorage-independent growth of MKN1 and TMK-1 gastric cancer cells. We further confirmed that IQGAP3 interacted with Rho family GTPases, and had an important role in cytokinesis. Taken together, we demonstrated that IQGAP3 plays critical roles in migration and invasion of human gastric cancer cells, and regulates cytoskeletal remodeling, cell migration and adhesion. These findings may open a new avenue for the diagnosis and treatment of gastric cancer

    Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research

    No full text
    Abstract With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, transcripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, where several network properties have been shown to be functionally important. Here, we discuss how such methodology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using cancer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treatments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, leading to rapid advances in medicine. From the clinicians’ point of view, it is necessary to bridge the gap between theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and treatment of the world’s major diseases

    Kinetics of a Two-Component p

    No full text

    Purification, crystallization and preliminary X-ray analysis of rice BGlu1 Îē-glucosidase with and without 2-deoxy-2-fluoro-Îē-d-glucoside

    No full text
    Rice BGlu1 Îē-glucosidase was purified from recombinant E. coli and crystallized with and without the inhibitor 2-deoxy-2-fluoro-Îē-d-glucose. The crystals diffracted to 2.15 and 2.75 Å, respectively
    corecore