17 research outputs found

    Gut Hormones and Their Effect on Bone Metabolism. Potential Drug Therapies in Future Osteoporosis Treatment

    Get PDF
    Bone homeostasis displays a circadian rhythm with increased resorption during the night time as compared to day time, a difference that seems—at least partly—to be caused by food intake during the day. Thus, ingestion of a meal results in a decrease in bone resorption, but people suffering from short bowel syndrome lack this response. Gut hormones, released in response to a meal, contribute to this link between the gut and bone metabolism. The responsible hormones appear to include glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), known as incretin hormones due to their role in regulating glucose homeostasis by enhancing insulin release in response to food intake. They interact with their cognate receptors (GIPR and GLP-1R), which are both members of the class B G protein-coupled receptors (GPCRs), and already recognized as targets for treatment of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide-2 (GLP-2), secreted concomitantly with GLP-1, acting via another class B receptor (GLP-2R), is also part of this gut-bone axis. Several studies, including human studies, have indicated that these three hormones inhibit bone resorption and, moreover, that GIP increases bone formation. Another hormone, peptide YY (PYY), is also secreted from the enteroendocrine L-cells (together with GLP-1 and GLP-2), and acts mainly via interaction with the class A GPCR NPY-R2. PYY is best known for its effect on appetite regulation, but recent studies have also shown an effect of PYY on bone metabolism. The aim of this review is to summarize the current knowledge of the actions of GIP, GLP-1, GLP-2, and PYY on bone metabolism, and to discuss future therapies targeting these receptors for the treatment of osteoporosis

    Successful Use of a GLP-1 Receptor Agonist as Add-on Therapy to Sulfonylurea in the Treatment of KCNJ11 Neonatal Diabetes

    Get PDF
    Sulfonylurea monotherapy is the standard treatment for patients with the most common form of permanent neonatal diabetes, KCNJ11neonatal diabetes, but it is not always sufficient. For the first time, we present a case of successful use of a GLP-1 receptor agonist as add-on therapy in the treatment of a patient with KCNJ11 neonatal diabetes and insufficient effect of sulfonylurea monotherapy. Good glycaemic control was maintained with a HbA1c level of 48 mmol/mol (6.5%) at the end of 26 months’ follow-up
    corecore