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Abstract Gastric bypass surgery leads to profound changes in the secretion of gut hormones with effects on
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metabolism, appetite, and food intake. Here, we discuss their contributions to the improvement in
glucose tolerance and the weight loss that results from the operations. We find that the improved
glucose tolerance is due the following events: a negative energy balance and resulting weight loss,
which improve first hepatic and later peripheral insulin sensitivity, in combination with increased
postprandial insulin secretion elicited particularly by exaggerated glucagon-like peptide-1 responses.
The weight loss is due to loss of appetite resulting in reduced energy intake, and we find it probable
that this process is driven by exaggerated secretion of appetite-regulating gut hormones including,
but probably not limited to, glucagon-like peptide-1 and peptide-YY. The increased secretion is due
to an accelerated exposure to and absorption of nutrients in the small intestine. This places the
weight loss and the gut hormones in key positions with respect to the metabolic improvements after
bypass surgery. (Surg Obes Relat Dis 2018;14:708–714.) r 2018 American Society for Metabolic
and Bariatric Surgery. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The interest in the hormonal changes after bariatric
surgery derives from 2 fundamental observations: (1) the
weight loss appears to result from reductions in appetite and
food intake, which suggests that the operation interferes
with the normal regulation of appetite and food intake, and
(2) the resolution of type 2 diabetes that occurs already a
few days after surgery before any major weight loss has
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occurred [1,2], suggesting that mechanisms independent of
weight loss are involved.
In our laboratory, the interest in the hormonal changes

after bariatric surgery began with the observation that
jejuno-ileal bypass in humans causes grossly elevated
postprandial responses of “enteroglucagon.” Enterogluca-
gon is a collective designation for glicentin and oxy-
ntomodulin, products of the glucagon precursor,
proglucagon, which is also expressed in the L-cells of the
gut and here is processed to these 2 peptides [3]. A few
years later we discovered that proglucagon in the gut gives
rise to 2 additional glucagon-like peptides (GLPs), GLP-1
and GLP-2 [4], with important effects on insulin secretion
[5], food intake [6], and intestinal growth [7]. Consistent
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Fig. 1. Timeline of important mechanisms in weight loss and diabetes
resolution after RYGB.
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with our findings after jejuno-ileal bypass, we found that
GLP-2 secretion is greatly upregulated by ileal transposition
in rats [8]. The potential importance of these changes in
hormone secretion for the weight changes was supported by
studies by Näslund et al. [9,10]. However, because of the
powerful insulinotropic effects of GLP-1, it was relevant to
examine secretion of this hormone in a group of patients
undergoing Roux-en-Y gastric bypass (RYGB), who suf-
fered from severe postoperative hypoglycemia [11]. Indeed,
in these patients, we measured dramatically elevated post-
prandial levels of GLP-1, reaching between 300 and 4500
pmol/L (i.e., 10–20 times higher normally observed except
in people undergoing gastrectomies and those with post-
operative dumping) [12]. Soon after, Le Roux et al. [13]
published more comprehensive data from both human and
animal studies showing exaggerated release of not only
GLP-1 but also the additional L-cell product peptide-YY
(PYY), which is also considered an appetite-regulating
hormone [14]. In further studies, we observed that increases
did not involve the other incretin hormone, glucose-depend-
ent insulinotropic polypeptide (GIP), and that similar
changes were not observed in patients undergoing gastric
banding operations [15]. We also observed that hypoglyce-
mia occurring after RYGB was clearly hyperinsulinemic
and was associated with even higher GLP-1 responses and
that glucagon responses were paradoxically increased (in
spite of the hyperglycemia and the exaggerated GLP-1
responses, which would be expected to inhibit glucagon
secretion) [16]. These findings suggested that the surgical
rearrangement after RYGB, similar to that after jejuno-ileal
bypass, was responsible for the dramatic change in gut
hormone secretion and that diabetes resolution and perhaps
also loss of appetite/weight loss might be consequences of
these changes. Indeed, in a patient with insulin-treated type
2 diabetes who had a gastrostomy catheter inserted after the
operation, we were able to study metabolite and hormone
secretion on 2 consecutive days 5 weeks postoperatively,
when the patient was completely well and was given
identical meals either orally (via the bypass) or via the
gastrostomy catheter (i.e., via the “original” pathway:
stomach, duodenum, and upper small intestine) [17]. On
the day of gastrostomy feeding, he had diabetes and “normal”
GLP-1 and insulin values; on the oral day, he had normal
glucose tolerance and large GLP-1 and insulin responses. On
the background of these and other studies we formulated a
hypothesis [18] regarding diabetes resolution and weight loss
after RYGB, shown diagrammatically in Fig. 1 [19].
Mechanisms explaining diabetes resolution after RYGB

Early improvements in insulin sensitivity

The most important early event is probably the dramatic
change in hepatic insulin resistance, which occurs within a few
days and reaches approximately 50% of preoperative values
after just 1 week [2]. At this time, the values are equivalent to
those obtained in matched, glucose-tolerant individuals. The
decrease is evident whether determined by calculation of the
homeostatic model assessment - insulin resistance (HOMA-IR)
value from basal glucose and insulin levels or measured using
clamp and glucose tracer methodology [20]. Concomitantly
with the changes in hepatic insulin sensitivity, insulin clearance
increases immediately after RYGB, which importantly influen-
ces peripheral insulin concentrations (i.e., evaluation of changes
in insulin secretion must be based on C-peptide measurements).
These improvements are likely due to the postoperative calorie
restriction and the ensuing loss of liver fat as elegantly
demonstrated using magnetic resonance imaging for liver fat
[21], although the improvement in insulin sensitivity after
surgery was actually larger than that observed after a very low
calorie intervention [22]. As recently demonstrated, liver fat is
an important determinant of HOMA-IR/hepatic insulin sensi-
tivity as well as insulin clearance [23,24].
The early changes in hepatic insulin sensitivity lead to a

rapid lowering of basal glucose concentrations, which may
contribute to removal of glucotoxic effect on pancreatic beta
cells as illustrated by the rapid enhancement of first phase
insulin secretion in patients with type 2 diabetes [25]. With
time and the accompanying weight loss, glucose disposal in
peripheral tissues (muscle and fat) shows continued improve-
ment (in fact near-normalization), which is explained by an
enhanced insulin sensitivity and signaling [20,26], whereas
glucose effectiveness seems to be unchanged after RYGB
[25]. The changes undoubtedly contributes importantly to
the improved glucose tolerance after RYGB.

Digestion and absorption of nutrients

As soon as the newly operated patient begins to ingest
nutrients, another mechanism sets in. As is clear today, the
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creation of the gastric pouch and the gastroenteroanasto-
mosis in no way represents a restriction; on the contrary, the
entry of nutrients into the more distal small intestine via the
Roux limb (the alimentary limb) is tremendously acceler-
ated. This can be documented with scintigraphic methods
[27] but is perhaps most clearly illustrated by paracetamol
absorption rates, which are hugely accelerated after bypass
so that maximum absorption values are observed immedi-
ately after food intake compared with approximately an
hour after meal intake before the operation [28]. Not only is
the more distal mucosa exposed to ingested nutrients at an
increased rate, the absorption of the nutrients is similarly
accelerated. This was clearly demonstrated in careful
studies by Jacobsen et al. [29] using double tracer technol-
ogy, in which not only endogenous glucose turnover was
followed, but also the fate of ingested nutrients using
specific labeling. In agreement with other studies, Jacobsen
et al. [29] found a pronounced early postprandial increase in
the plasma glucose concentration followed by a rapid
decline to much lower levels after 1 to 2 hours, compared
with preoperative values. The glucose production in the
liver was strongly but similarly inhibited in both cases (and
therefore had little influence), but the plasma glucose profile
was completely explained by a combination of a massive
rise in glucose rate of appearance resulting from absorption
of the meal glucose and a similar rise in glucose disappear-
ance, which was paralleled by a much greater rise in insulin
concentrations. Importantly, none of these changes were
due to urinary glucose losses, and the recovery of the
ingested glucose was nearly complete, documenting that the
fate of the ingested glucose could be completely accounted
for [29].
Interestingly, using other tracers we also followed the

fate of ingested proteins. Using tracers for phenylalanine
and leucine (biosynthetically incorporated into the ingested
casein proteins) we found a similarly accelerated absorption
of the ingested proteins [30]. These experiments illustrate
that proteins are extremely rapidly digested and absorbed
after RYGB surgery and that the location of accelerated
exposure and absorption occurs beyond the Roux limb. This
is because, after the anastomosis with the biliopancreatic
limb, it is only in the common limb that ingested proteins
will meet the endoproteases from the pancreas and stomach.
Clearly, without these proteases, the large proteins (in casu
casein) of the meal could not be digested.
Stimulation of hormone secretion

Recent research into the mechanisms for release of the
gut hormones has demonstrated that it is not exposure of the
gut to the nutrients, but absorption of nutrients that
constitutes the most powerful stimulus for secretion
[31–33]. In the case of glucose, which is perhaps the most
important stimulus for GLP-1 secretion after bypass [34], it
is transported intracellularly by the sodium-glucose
cotransporter-1 (SGLT-1) transporter and partly metabo-
lized; both processes mediate a depolarization of the
secretory L-cells, leading to calcium entry, which triggers
basolateral secretion [31,35]. Indeed, it can be demonstrated
that secretion rates parallel glucose absorption rates at the
cellular level [33]. It is therefore not surprising that a greatly
exaggerated GLP-1 postprandial response is observed as
soon as meal ingestion is resumed after surgery [36] (for
review see Madsbad et al. [19]). Bile acids have also been
suggested to play a role and may contribute, but the
exaggerated response to mixed meal stimulation after
RYGB does not seem to be explained by bile acid
stimulation [37].
It has been speculated that adaptive mechanisms involv-

ing increased numbers of endocrine cells in both the
alimentary and the common limb could contribute to the
hypersecretion, but as demonstrated in the previously
mentioned experiment with gastrostomy feeding [17,38]
and more recently in experiments with reversal of RYGB
[39], the secretory changes after surgery are immediately
reversed after rerouting of nutrients to the stomach and after
reversal of RYGB. In addition, although there are signs of
moderate changes in the density gut endocrine cells after the
operation [40], they do not seem to be able to explain the
dramatic changes in secretion.
The role of GLP-1

Thus, just a few days after the operation there is a
dramatically increased secretion of several gut hormones,
including the insulinotropic peptide GLP-1, occurring
simultaneously with an exaggerated increase in plasma
glucose. This combination is known to provide a powerful
stimulus to the beta cells [41] and, as already mentioned, we
do see a correspondingly elevated secretion of insulin in the
patients. Is it possible to link the GLP-1 response in humans
to the insulin secretion and the rapid postprandial glucose
deposition? Administration of the potent GLP-1 receptor
antagonist exendin 9-39 allows an investigation of this [42].
Jorgensen et al. [36] studied meal-induced responses in
obese patients with type 2 diabetes scheduled for RYGB,
both before and 1 week and 3 months after the operation
with or without simultaneous infusions of large doses of the
GLP-1 receptor antagonist. The GLP-1 receptor antagonist
very significantly impaired insulin secretion (as determined
by calculation of actual insulin secretion rates from
C-peptide concentrations) before, and particularly after,
the operation; as a result, glucose tolerance, which was
normalized during the course of the 3 months, was also
significantly impaired by the antagonist. Indeed, both
insulin secretion and glucose tolerance reverted to the
preoperative values by the antagonist. The mechanism of
action of GLP-1 on the beta cell secretion consists in
essence of its ability to increase beta cell sensitivity to
glucose [43], and the improvement in this parameter was
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also completely reverted to postoperative values by the
antagonist [36]. These studies clearly pointed to a very
important role of the exaggerated GLP-1 response for the
postprandial improvement in glucose tolerance after RYGB.
Salehi et al. [44] presented similar results. These apparent
effects of endogenous GLP-1 are in complete agreement
with the powerful effects of GLP-1 receptor agonists on
glucose regulation and weight in obese patients with type 2
diabetes (see, e.g., Marso et al. [45]). The importance of the
other incretin hormone GIP for the improved glucose
tolerance after RYGB has been debated, and both slightly
increased [28], unchanged [2,34], and slightly decreased
[15] secretion has been reported, which speaks against a
major role of GIP. Accordingly, enhancement of active GIP
concentrations during administration of the dipeptidyl-
peptidase-4 (DPP-4) inhibitor sitagliptin did not improve
insulin secretion [46]. However, diminished glucotoxicity
after RYGB could hypothetically restore the insulinotropic
effect of GIP [47,48] after surgery.
It has been suggested, particularly on the basis of the

early reports of islet hyperfunction explaining hypoglyce-
mia after RYGB [49], that an adaptive growth of the islets
(e.g., stimulated by GLP-1) might explain some of the
benefits of RYGB, but careful studies of islet function
performed for up to 3 years after RYGB have shown that
the intrinsic beta cell function, if anything, is slightly
lowered with time, probably as an adaptation for improved
insulin sensitivity, whereas the postprandial gastrointestinal
stimulation factor persists [50]. Also, the early reversal of
hypoglycemia after reversal of RYGB argues against islet
growth as a mechanism for post-RYGB hypoglycemia [39].
RYGB and weight loss

As discussed earlier, negative energy balance and the
subsequent weight loss play an important role for the
improvement in glucose tolerance induced by RYGB, but
what is the mechanism of the weight loss?
Again, gut hormones may play an important role. Numer-

ous hypotheses for the weight loss mechanisms have been
presented, the earliest including mechanical restriction of
food intake and malabsorption of macronutrients, consistent
with the nature of the surgical intervention. More recent
studies conclude that neither is involved to an appreciable
degree. First, malabsorption is generally absent [51] and, as
discussed, both absorption kinetics and scintigraphy studies
indicate that nutrient passage through the gastric pouch is
facilitated rather than restricted [27,28]. Postoperative
changes in energy metabolism have also been discussed at
great length, in particular inspired by rodent studies, which
generally have shown increased energy expenditure after
RYGB [52]. Meal-associated thermogenesis was also
reported to increase after RYGB in humans (whereas total
energy expenditure decreased in parallel with the weight loss
[53]). However, meal-associated thermogenesis increased
only when expressed in relation to total energy expenditure,
which decreased while absolute meal-associated thermo-
genesis did not change, which is perhaps not too surprising.
In general, as might be expected, energy metabolism seems
to follow weight closely, as recently demonstrated in experi-
ments with respiratory chambers where patients were
randomized to RYGB or a similar calorie restriction [54].
It may be concluded, therefore, that the best explanation for
the weight loss is reduced energy intake, and this has been
documented both in laboratory studies (showing a 35%
decreased ad libitum food intake [55]) and during free living
[56]. A question then arises: Why does food intake decrease?
One explanation is, of course, an increased frequency of the
so-called dumping syndrome: postprandial nausea, dizziness,
and pain probably generated by the rapid entry of hyper-
osmotic nutrients into the small intestine [57]. However,
food intake also decreases independently of dumping and
appears to be related to decreased appetite [54,58], suggest-
ing that differences in appetite regulation may be important.
This is where the appetite-regulating hormones enter the

stage. A convincing demonstration of a possible role for the
exaggerated release of gut hormones was provided by Le
Roux et al. [59] who found increased food intake in RYGB
patients in response to an injection of a somatostatin
analogue that simultaneously, as expected, eliminated the
gut hormone responses to meal intake. Similarly, looking at
“good responders” versus “bad responders” (i.e., those
showing large versus small weight losses) gut hormone
responses were larger in “good responders” [58,60]. But
which gut hormones are responsible? The operation
increases the secretion of many of the hormones, which
have a documented role in appetite regulation, including
cholecystokinin, GLP-1, and PYY [34,59]. Other candidate
inhibitors of appetite include oxyntomodulin and neuro-
tensin, which are also increased [61,62]. Ghrelin represents
a special case: Ghrelin increases appetite and food intake,
and its postprandial secretion decreases after RYGB [28].
Statistical analysis strongly suggests that the decrease may
be involved in the early decrease in appetite [54]. However,
after some time, ghrelin levels return to preoperative levels,
whereas appetite and food intake remain lower [28]. The
most potent of these appetite regulators may be PYY and
GLP-1, which can both be demonstrated to inhibit food
intake in overweight individuals. When administered
together their inhibitory effects seem to be supra additive
[63]. We [54] made an attempt to isolate the particular role
of GLP-1 for inhibition of food intake after RYGB using
the GLP-1 receptor antagonist exendin 9-39, which clearly
resulted in increased food intake in obese patients with type
2 diabetes scheduled for RYGB, but surprisingly the
(lower) food intake remained unchanged during antagonist
administration after the operation. However, closer analysis
of the hormonal changes occurring during exendin 9-39
administration revealed that not only did GLP-1 responses
increase markedly, due to elimination of a well-known



J. J. Holst et al. / Surgery for Obesity and Related Diseases 14 (2018) 708–714712
negative feedback regulatory mechanism [36], but the
already greatly exaggerated postoperative PYY responses
were similarly further increased by the antagonist. The
experiment, therefore, was interpreted to indicate that an
inhibitory influence of GLP-1 may very well have been
removed with the antagonist, but at the same time an even
larger PYY response occurs, which might in itself cause a
further inhibition of food intake so that the net result is
neutral. It was therefore decided to try to block both GLP-1
and PYY actions. Again, exendin 9-39 could be employed
to block GLP-1 actions, but no antagonist of PYY action is
available for human use. However, PYY is secreted as PYY
1-36, a peptide of 36 amino acids, which actually stimulates
food intake via an interaction with Y1 and Y5 receptors
[64]. Like GLP-1, PYY is metabolized rapidly after its
release by the enzyme dipeptidyl peptidase-4 (DPP-4), and
the product PYY 3-36 is the actual appetite-inhibiting
hormone, interacting with Y2 receptors in the arcuate
nucleus. DPP-4 inhibitors for human use are abundantly
available. A crossover experiment comprising 4 interven-
tions: placebo, exendin 9-39, sitagliptin (a DPP-4 inhibitor),
and a combination of exendin 9-39 and sitagliptin was
therefore carried out in RYGB-operated individuals. Anal-
ysis of the postprandial hormone responses revealed greatly
exaggerated GLP-1 and PYY concentrations during pla-
cebo, and further increases during exendin 9-39 were
observed as expected. The DPP-4 inhibitor caused even
further increases in active GLP-1 concentrations but almost
abolished the PYY 3-36 responses to food intake, and the
combined administration of the inhibitors resulted in a 20%
increase in food intake [55]. These results strongly support
that the 2 hormones are involved in the inhibition of
appetite and food intake after RYGB. It should be noted
that the plasma concentrations of the 2 hormones observed
after RYGB are actually greater than those that can be
employed in studies of their effects on food intake in
healthy individuals because of side effects [64,65], indicat-
ing that the magnitude of their responses in the RYGB
patients is consistent with a powerful effect on appetite and
food intake. Clearly, these results do not exclude the
possibility that other gut hormones may also play an
important role.
It may be concluded that the particularly postprandial

changes in gut hormone secretion postoperatively are likely
to play important roles for not only insulin secretion but
also for appetite and food intake. It is therefore attractive to
mimic these responses to treat overeating, obesity, and
diabetes. As discussed, the effects of GLP-1 on glucose and
metabolism are already being exploited in the GLP-1–based
therapies, and attempts are being made to develop therapies
based on the actions of the other hormones [61] as well.
Attempts to increase the secretion of the endogenous
hormones using stimulators of their secretion will also be
of particular interest due to the high local hormone
concentrations with potential paracrine and neural actions
that may be generated with this approach, in addition to the
endocrine effects [66].
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