487 research outputs found
Soliton-dynamical approach to a noisy Ginzburg-Landau model
We present a dynamical description and analysis of non-equilibrium
transitions in the noisy Ginzburg-Landau equation based on a canonical phase
space formulation. The transition pathways are characterized by nucleation and
subsequent propagation of domain walls or solitons. We also evaluate the
Arrhenius factor in terms of an associated action and find good agreement with
recent numerical optimization studies.Comment: 4 pages (revtex4), 3 figures (eps
LDA+DMFT computation of the electronic spectrum of NiO
The electronic spectrum, energy gap and local magnetic moment of paramagnetic
NiO are computed by using the local density approximation plus dynamical
mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian
obtained within the local density approximation (LDA) is expressed in Wannier
functions basis, with only the five anti-bonding bands with mainly Ni 3d
character taken into account. Complementing it by local Coulomb interactions
one arrives at a material-specific many-body Hamiltonian which is solved by
DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating
gap in NiO is found to be a result of the strong electronic correlations in the
paramagnetic state. In the vicinity of the gap region, the shape of the
electronic spectrum calculated in this way is in good agreement with the
experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy
results of Sawatzky and Allen. The value of the local magnetic moment computed
in the paramagnetic phase (PM) agrees well with that measured in the
antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the
local magnetic moment in the PM phase are in accordance with the experimental
finding that AFM long-range order has no significant influence on the
electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio
Domain wall propagation and nucleation in a metastable two-level system
We present a dynamical description and analysis of non-equilibrium
transitions in the noisy one-dimensional Ginzburg-Landau equation for an
extensive system based on a weak noise canonical phase space formulation of the
Freidlin-Wentzel or Martin-Siggia-Rose methods. We derive propagating nonlinear
domain wall or soliton solutions of the resulting canonical field equations
with superimposed diffusive modes. The transition pathways are characterized by
the nucleations and subsequent propagation of domain walls. We discuss the
general switching scenario in terms of a dilute gas of propagating domain walls
and evaluate the Arrhenius factor in terms of the associated action. We find
excellent agreement with recent numerical optimization studies.Comment: 28 pages, 16 figures, revtex styl
The Cerium volume collapse: Results from the LDA+DMFT approach
The merger of density-functional theory in the local density approximation
(LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio
calculation of Ce including the inherent 4f electronic correlations. We solve
the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the
Ce energy, spectrum, and double occupancy as a function of volume. At low
temperatures, the correlation energy exhibits an anomalous region of negative
curvature which drives the system towards a thermodynamic instability, i.e.,
the -to- volume collapse, consistent with experiment. The
connection of the energetic with the spectral evolution shows that the physical
origin of the energy anomaly and, thus, the volume collapse is the appearance
of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid
growth in the double occupancy.Comment: 4 pages, 3 figure
Unquenched large orbital magnetic moment in NiO
Magnetic properties of NiO are investigated by incorporating the spin-orbit
interaction in the LSDA+U scheme. It is found that the large part of orbital
moment remains unquenched in NiO. The orbital moment contributes about mu_L =
0.29 mu_B to the total magnetic moment of M = 1.93 mu_B, as leads to the
orbital-to-spin angular momentum ratio of L/S = 0.36. The theoretical values
are in good agreement with recent magnetic X-ray scattering measurements.Comment: 4 pages, 2 figure
Electronic structure of the MO oxides (M=Mg, Ca, Ti, V) in the GW approximation
The quasiparticle band structures of nonmagnetic monoxides, MO (M=Mg, Ca, Ti,
and V), are calculated by the GW approximation. The band gap and the width of
occupied oxygen 2p states in insulating MgO and CaO agree with experimental
observation. In metallic TiO and VO, conduction bands originated from metal 3d
states become narrower. Then the partial densities of transition metal e_g and
t_2g states show an enhanced dip between the two. The effects of static
screening and dynamical correlation are discussed in detail in comparison with
the results of the Hartree-Fock approximation and the static Coulomb hole plus
screened exchange approximation. The d-d Coulomb interaction is shown to be
very much reduced by on-site and off-site d-electron screening in TiO and VO.
The dielectric function and the energy loss spectrum are also presented and
discussed in detail.Comment: 10 pages, 5 figure
First-principles calculations of the self-trapped exciton in crystalline NaCl
The atomic and electronic structure of the lowest triplet state of the
off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is
calculated using the local-spin-density (LSDA) approximation. In addition, the
Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption
peak are calculated and compared to experiment. LSDA accurately predicts
transition energies if the initial and final states are both localized or
delocalized, but 1 eV discrepancies with experiment occur if one state is
localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure
High-pressure structural, elastic and electronic properties of the scintillator host material, KMgF_3
The high-pressure structural behaviour of the fluoroperovskite KMgF_3 is
investigated by theory and experiment. Density functional calculations were
performed within the local density approximation and the generalized gradient
approximation for exchange and correlation effects, as implemented within the
full-potential linear muffin-tin orbital method. In situ high-pressure powder
x-ray diffraction experiments were performed up to a maximum pressure of 40 GPa
using synchrotron radiation. We find that the cubic Pm\bar{3}m crystal symmetry
persists throughout the pressure range studied. The calculated ground state
properties -- the equilibrium lattice constant, bulk modulus and elastic
constants -- are in good agreement with experimental results. By analyzing the
ratio between the bulk and shear modulii, we conclude that KMgF_3 is brittle in
nature. Under ambient conditions, KMgF_3 is found to be an indirect gap
insulator with the gap increasing under pressure.Comment: 4 figure
Electronic Configuration of Yb Compounds
The total energy differences between divalent and trivalent configurations of Yb ions in a number of Yb compounds are studied. Two different band theoretical methods, which differ in the treatment of the localized f electrons, are used. The results show that in all Yb compounds the valence energy differences are equal to the energy needed to localize an f electron. These valence energy differences correlate with the number of f electrons hybridizing with the conduction bands in the trivalent configuration. For divalent YbS, the pressure induced f-electron delocalization implies an intermediate valency, as also indicated by experiment
Maximally-localized Wannier Functions in Antiferromagnetic MnO within the FLAPW Formalism
We have calculated the maximally-localized Wannier functions of MnO in its
antiferromagnetic (AFM) rhombohedral unit cell, which contains two formula
units. Electron Bloch functions are obtained with the linearized augmented
plane-wave method within both the LSD and the LSD+U schemes. The thirteen
uppermost occupied spin-up bands correspond in a pure ionic scheme to the five
Mn 3d orbitals at the Mn_1 (spin-up) site, and the four O 2s/2p orbitals at
each of the O_1 and O_2 sites. Maximal localization identifies uniquely four
Wannier functions for each O, which are trigonally-distorted sp^3-like
orbitals. They display a weak covalent bonding between O 2s/2p states and
minority-spin d states of Mn_2, which is absent in a fully ionic picture. This
bonding is the fingerprint of the interaction responsible for the AFM ordering,
and its strength depends on the one-electron scheme being used. The five Mn
Wannier functions are centered on the Mn_1 site, and are atomic orbitals
modified by the crystal field. They are not uniquely defined by the criterion
of maximal localization and we choose them as the linear combinations which
diagonalize the r^2 operator, so that they display the D_3d symmetry of the
Mn_1 site.Comment: 11 pages, 6 PostScript figures. Uses Revtex4. Hi-res figures
available from the author
- …