20 research outputs found

    Energetics and efficiency of a molecular motor model

    Full text link
    The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al. (Phys. Lett. 237, 297 (1998)) is analyzed from an analytical point of view. The model which is based on protein friction with a track is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor is addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10 pct in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action.Comment: 23 pages, 6 figures, final version, appeared in J. Stat. Mech. P12001 (2013

    Strain-Induced Conduction Band Spin Splitting in GaAs from First Principles Calculations

    Full text link
    We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar relativistic hamiltonian. These are the first calculations of conduction band spin splitting under deformation based on a quasiparticle approach; and because the self-consistent GW scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. We also discuss the spin relaxation time under [110] strain and show that it exhibits an in-plane anisotropy, which can be exploited to obtain the magnitude and sign of the conduction band spin splitting experimentally.Comment: 8 pages, 4 figures, 1 tabl

    Light emission from silicon with tin-containing nanocrystals

    Full text link
    Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si_{1-x-y}Sn_{x}C_{y}, where x = 1.6 % and y = 0.04 %, followed by annealing at various temperatures ranging from 650 to 900 degrees C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ~ 10^{17} cm^{-3} and ~ 5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 degrees C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.Comment: 5 pages, 3 figures, submitted to AIP Advance

    Domain wall propagation and nucleation in a metastable two-level system

    Full text link
    We present a dynamical description and analysis of non-equilibrium transitions in the noisy one-dimensional Ginzburg-Landau equation for an extensive system based on a weak noise canonical phase space formulation of the Freidlin-Wentzel or Martin-Siggia-Rose methods. We derive propagating nonlinear domain wall or soliton solutions of the resulting canonical field equations with superimposed diffusive modes. The transition pathways are characterized by the nucleations and subsequent propagation of domain walls. We discuss the general switching scenario in terms of a dilute gas of propagating domain walls and evaluate the Arrhenius factor in terms of the associated action. We find excellent agreement with recent numerical optimization studies.Comment: 28 pages, 16 figures, revtex styl

    Exact solution of a linear molecular motor model driven by two-step fluctuations and subject to protein friction

    Full text link
    We investigate by analytical means the stochastic equations of motion of a linear molecular motor model based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by Mogilner et al. (A. Mogilner et al., Phys. Lett. {\bf 237}, 297 (1998)), and averaging over both the two-step internal conformational fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are not readily accessible from numerical solutions. In particular, we find that the model is able to predict physiologically reasonable values for the load-free motor velocity and the motor mobility.Comment: 12 pages revtex, 6 eps-figure

    Simple Rules for Determining Valencies of f-electron Systems

    No full text
    The electronic structure of f-electron systems is calculated with the self-interaction-corrected local-spin-density (LSD) approximation. This scheme allows for a splitting of the f-electron manifold into an integral number of localized electrons and self-consistently determined fractional number of band electrons. Therefore, in comparison with the LSD approximation, where all f states are pinned at the Fermi energy, only a maximum of one f band is left at the Fermi energy. We show that this band is partially occupied with occupancy n(f), and the f-electron fluctuations are reduced compared with the LSD approximation. When n(f) exceeds a critical value of approximately 0.6, it becomes energetically more favourable to localize this state, and the number of valence bands is reduced by one
    corecore