579 research outputs found

    Ultrafast electro-nuclear dynamics of H2 double ionization

    Get PDF
    The ultrafast electronic and nuclear dynamics of H2 laser-induced double ionization is studied using a time-dependent wave packet approach that goes beyond the fixed nuclei approximation. The double ionization pathways are analyzed by following the evolution of the total wave function during and after the pulse. The rescattering of the first ionized electron produces a coherent superposition of excited molecular states which presents a pronounced transient H+H- character. This attosecond excitation is followed by field-induced double ionization and by the formation of short-lived autoionizing states which decay via double ionization. These two double ionization mechanisms may be identified by their signature imprinted in the kinetic-energy distribution of the ejected protons

    Optimization of Generalized Multichannel Quantum Defect reference functions for Feshbach resonance characterization

    Full text link
    This work stresses the importance of the choice of the set of reference functions in the Generalized Multichannel Quantum Defect Theory to analyze the location and the width of Feshbach resonance occurring in collisional cross-sections. This is illustrated on the photoassociation of cold rubidium atom pairs, which is also modeled using the Mapped Fourier Grid Hamiltonian method combined with an optical potential. The specificity of the present example lies in a high density of quasi-bound states (closed channel) interacting with a dissociation continuum (open channel). We demonstrate that the optimization of the reference functions leads to quantum defects with a weak energy dependence across the relevant energy threshold. The main result of our paper is that the agreement between the both theoretical approaches is achieved only if optimized reference functions are used.Comment: submitte to Journal of Physics

    Legal aspects of Web 2.0 activities: management of legal risk associated with use of YouTube, MySpace and Second Life

    Get PDF
    As Web 2.0 technologies proliferate, an increasing number of Australians, especially young Australians, are relying primarily on information and communication technologies to engage and interact with each other and the world. If governments are to have meaningful interaction with young people, it is therefore important for them to explore the potential of these communication platforms. But legal considerations must be taken into account when strategising how best to make use of emerging technologies. The report identifies the practical legal risks associated with activities conducted in online participatory spaces. Encompassing Copyright, Privacy, Defamation, Breach of Confidence and other areas of law, the report outlines the main considerations that arise when engaging in the online environment. It also examines the popular social networking platforms YouTube, MySpace and Second Life in detail, analysing legal issues specific to their Terms of Use and functionality

    Coherent Control of Isotope Separation in HD+ Photodissociation by Strong Fields

    Full text link
    The photodissociation of the HD+ molecular ion in intense short- pulsed linearly polarized laser fields is studied using a time- dependent wave-packet approach where molecular rotation is fully included. We show that applying a coherent superposition of the fundamental radiation with its second harmonic can lead to asymmetries in the fragment angular distributions, with significant differences between the hydrogen and deuterium distributions in the long wavelength domain where the permanent dipole is most efficient. This effect is used to induce an appreciable isotope separation.Comment: Physical Review Letters, 1995 (in press). 4 pages in revtex format, 3 uuencoded figures. Full postcript version available at: http://chemphys.weizmann.ac.il/~charron/prl.ps or ftp://scipion.ppm.u-psud.fr/coherent.control/prl.p

    Resonance structures in the multichannel quantum defect theory for the photofragmentation processes involving one closed and many open channels

    Get PDF
    The transformation introduced by Giusti-Suzor and Fano and extended by Lecomte and Ueda for the study of resonance structures in the multichannel quantum defect theory (MQDT) is used to reformulate MQDT into the forms having one-to-one correspondence with those in Fano's configuration mixing (CM) theory of resonance for the photofragmentation processes involving one closed and many open channels. The reformulation thus allows MQDT to have the full power of the CM theory, still keeping its own strengths such as the fundamental description of resonance phenomena without an assumption of the presence of a discrete state as in CM.Comment: 7 page

    Theoretical study of a cold atom beam splitter

    Full text link
    A theoretical model is presented for the study of the dynamics of a cold atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is split between the two branches of this laser guide, and we compare experimental measurements of the splitting efficiency with semiclassical simulations. We then explore the possibilities of optimization of this beam splitter. Our numerical study also gives access to detailed information, such as the atom temperature after the splitting

    Nuclear classical dynamics of H2_2 in intense laser field

    Full text link
    In the first part of this paper, the different distinguishable pathways and regions of the single and sequential double ionization are determined and discussed. It is shown that there are two distinguishable pathways for the single ionization and four distinct pathways for the sequential double ionization. It is also shown that there are two and three different regions of space which are related to the single and double ionization respectively. In the second part of the paper, the time dependent Schr\"{o}dinger and Newton equations are solved simultaneously for the electrons and the nuclei of H2_2 respectively. The electrons and nuclei dynamics are separated on the base of the adiabatic approximation. The soft-core potential is used to model the electrostatic interaction between the electrons and the nuclei. A variety of wavelengths (390 nm, 532 nm and 780 nm) and intensities (5×10145\times10^{14} Wcm2Wcm^{-2} and 5×1015 5\times10^{15} Wcm2Wcm^{-2}) of the ultrashort intense laser pulses with a sinus second order envelope function are used. The behaviour of the time dependent classical nuclear dynamics in the absence and present of the laser field are investigated and compared. In the absence of the laser field, there are three distinct sections for the nuclear dynamics on the electronic ground state energy curve. The bond hardening phenomenon does not appear in this classical nuclear dynamics simulation.Comment: 16 pages, 7 figure

    A quantitative theory-versus-experiment comparison for the intense laser dissociation of H2+

    Full text link
    A detailed theory-versus-experiment comparison is worked out for H2+_2^+ intense laser dissociation, based on angularly resolved photodissociation spectra recently recorded in H.Figger's group. As opposite to other experimental setups, it is an electric discharge (and not an optical excitation) that prepares the molecular ion, with the advantage for the theoretical approach, to neglect without lost of accuracy, the otherwise important ionization-dissociation competition. Abel transformation relates the dissociation probability starting from a single ro-vibrational state, to the probability of observing a hydrogen atom at a given pixel of the detector plate. Some statistics on initial ro-vibrational distributions, together with a spatial averaging over laser focus area, lead to photofragments kinetic spectra, with well separated peaks attributed to single vibrational levels. An excellent theory-versus-experiment agreement is reached not only for the kinetic spectra, but also for the angular distributions of fragments originating from two different vibrational levels resulting into more or less alignment. Some characteristic features can be interpreted in terms of basic mechanisms such as bond softening or vibrational trapping.Comment: submitted to PRA on 21.05.200

    Access, Progress, and Fairness:Rethinking Exclusivity in Copyright

    Get PDF
    This Article provides a detailed critique of the incentives-access binary in copyright discourse. Mainstream copyright theory generally accepts that copyright is a balance between providing incentives to authors to invest in the production of cultural works and enhancing the dissemination of those works to the public. This Article argues that dominant copyright theory obscures the possibility of developing a model of copyright that is able to support authors without necessarily limiting access to creative works. The abundance that the Internet allows suggests that increasing access to cultural works to enhance learning, sharing, and creative play should be a fundamental goal of copyright policy. This Article examines models of supporting and coordinating cultural production without exclusivity, including crowdfunding, tips, levies, restitution, and service-based models. In their current forms, each of these models fails to provide a cohesive and convincing vision of the two main functions of copyright: instrumentality (how cultural production can be funded) and fairness (how authors can be adequately rewarded). This Article provides three avenues for future research to investigate the viability of alternate copyright models: (1) a better theory of fairness in copyright rewards; (2) more empirical study of commons models of cultural production; and (3) a critical examination of the noneconomic harm-limiting function that exclusivity in copyright provides
    corecore