10 research outputs found

    Nutrient limitation of periphyton growth in arctic lakes in south-west Greenland

    Get PDF
    Many arctic lakes are oligotrophic systems where phototrophic growth is controlled by nutrient supply. Recent anthropogenic nutrient loading is associated with biological and/or physico-chemical change in several lakes across the arctic. Shifts in nutrient limitation (nitrogen (N), phosphorus (P), or N ? P) and associated effects on the growth and composition of algal communities are commonly reported. The Kangerlussuaq region of south-west Greenland forms a major lake district which is considered to receive little direct anthropogenic disturbance. However, long-range transport of pollutant N is now reaching Greenland, and it was hypothesised that a precipitation gradient from the inland ice sheet margin to the coast might also deliver increased N deposition. In situ nutrient bioassays were deployed in three lakes across the region: ice sheet margin, inland (close to Kangerlussuaq) and the coast (near Sisimiut), to determine nutrient limitation of lakes and investigate any effects of nutrients on periphyton growth and community composition. Nutrient limitation differed amongst lakes: N limitation (ice sheet margin), N and P limitation (inland) and N ? P co-limitation (coast). Factors including variation in N supply, ice phenology, seasonal algal succession, community structure and physical limnology are explored as mechanisms to explain differences amongst lakes. Nutrient limitation of arctic lakes and associated ecological impacts are highly variable, even across small geographic areas. In this highly sensitive region, future environmental change scenarios carry a strong risk of significantly altering nutrient limitation; in turn, potentially severely impacting lake structure and function

    Source and quantity of carbon influence its sequestration in Rostherne Mere (UK) sediment: a novel application of stepped combustion radiocarbon analysis

    Get PDF
    We explored the roles of phytoplankton production, carbon source, and human activity on carbon accumulation in a eutrophic lake (Rostherne Mere, UK) to understand how changes in nutrient loading, algal community structure and catchment management can influence carbon sequestration in lake sediments. Water samples (dissolved inorganic, organic and particulate carbon) were analysed to investigate contemporary carbon sources. Multiple variables in a 55-cm sediment core, which represents the last ~ 90 years of accumulation, were studied to determine historical production rates of algal communities and carbon sources. Fluctuations in net primary production, inferred from sedimentary diatom abundance and high-performance liquid chromatography (HPLC) pigment methods, were linked to nutrient input from sewage treatment works (STW) in the catchment. Stepped combustion radiocarbon (SCR) measurements established that lake sediment contains between 11% (~ 1929 CE) and 69% (~ 1978 CE) recalcitrant carbon, with changes in carbon character coinciding with peaks in accumulation rate and linked to STW inputs. Catchment disturbance was identified by radiocarbon analysis, and included STW construction in the 1930s, determined using SCR analysis, and recent nearby highway construction, determined by measurements on dissolved organic carbon from the lake and outflow river. The quantity of autochthonous carbon buried was related to diatom biovolume accumulation rate (DBAR) and decreased when diatom accumulation rate and valve size declined, despite an overall increase in net carbon production. HPLC pigment analysis indicated that changes in total C deposition and diatom accumulation were related to proliferation of non-siliceous algae. HPLC results also indicated that dominance of recalcitrant carbon in sediment organic carbon was likely caused by increased deposition rather than preservation factors. The total algal accumulation rate controlled the sediment organic carbon accumulation rate, whereas DBAR was correlated to the proportion of each carbon source buried

    A landscape perspective of Holocene organic carbon cycling in coastal SW Greenland lake-catchments

    Get PDF
    Arctic organic carbon (OC) stores are substantial and have accumulated over millennia as a function of changes in climate and terrestrial vegetation. Arctic lakes are also important components of the regional C-cycle as they are sites of OC production and CO2emissions but also store large amounts of OC in their sediments. This sediment OC pool is a mixture derived from terrestrial and aquatic sources, and sediment cores can therefore provide a long-term record of the changing interactions between lakes and their catchments in terms of nutrient and C transfer. Sediment carbon isotope composition (δ13C), C/N ratio and organic C accumulation rates (C AR) of14C-dated cores covering the last ∼10,000 years from six lakes close to Sisimiut (SW Greenland) are used to determine the extent to which OC dynamics reflect climate relative to lake or catchment characteristics. Sediment δ13C ranges from −19 to −32‰ across all lakes, while C/N ratios are 20 (mean = 12), values that indicate a high proportion of the organic matter is from autochthonous production but with a variable terrestrial component. Temporal trends in δ13C are variable among lakes, with neighbouring lakes showing contrasting profiles, indicative of site-specific OC processing. The response of an individual lake reflects its morphometry (which influences benthic primary production), the catchment:lake ratio, and catchment relief, lakes with steeper catchments sequester more carbon. The multi-site, landscape approach used here highlights the complex response of individual lakes to climate and catchment disturbance, but broad generalisations are possible. Regional Neoglacial cooling (from ∼5000 cal yr BP) influenced the lateral transfer of terrestrial OC to lakes, with three lakes showing clear increases in OC accumulation rate. The lakes likely switched from being autotrophic (i.e. net ecosystem production > ecosystem respiration) in the early Holocene to being heterotrophic after 5000 cal yr BP as terrestrial OC transfer increased

    Impacts of forestry planting on primary production in upland lakes from north-west Ireland

    Get PDF
    Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4–64% of catchment area). 210Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ13C) and nitrogen (δ15N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39–116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance

    Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle

    Get PDF
    Global aquatic ecosystems are under increasing threat from anthropogenic activity, as well as being exposed to past (and projected) climate change, however, the nature of how climate and human impacts are recorded in lake sediments is often ambiguous. Natural and anthropogenic drivers can force a similar response in lake systems, yet the ability to attribute what change recorded in lake sediments is natural, from that which is anthropogenic, is increasingly important for understanding how lake systems have, and will continue to function when subjected to multiple stressors; an issue that is particularly acute when considering management options for aquatic ecosystems. The duration and timing of human impacts on lake systems varies geographically, with some regions of the world (such as Africa and South America) having a longer legacy of human impact than others (e.g., New Zealand). A wide array of techniques (biological, chemical, physical and statistical) is available to palaeolimnologists to allow the deciphering of complex sedimentary records. Lake sediments are an important archive of how drivers have changed through time, and how these impacts manifest in lake systems. With a paucity of ‘real-time’ data pre-dating human impact, palaeolimnological archives offer the only insight into both natural variability (i.e., that driven by climate and intrinsic lake processes) and the impact of people. While there is a need to acknowledge complexity, and temporal and spatial variability when deciphering change from sediment archives, a palaeolimnological approach is a powerful tool for better understanding and managing global aquatic resources

    Temporal modelling of long-term heavy metal concentrations in aquatic ecosystems

    No full text
    This paper examines a series of connected and isolated lakes in the UK as a model system with historic episodes of heavy metal contamination. A 9-year hydrometeorological dataset for the sites was identified to analyse the legacy of heavy metal concentrations within the selected lakes based on physico-chemical and hydrometeorological parameters and, a comparison of the complementary methods of multiple regression, time series analysis and artificial neural network (ANN). The results highlight the importance of the quality of historic datasets without which analyses such as those presented in this research paper cannot be undertaken. The results also indicate that the ANNs developed were more realistic than the other methodologies (regression and time series analysis) considered. The ANNs provided a higher correlation coefficient and a lower mean squared error when compared to the regression models. However, quality assurance and pre-processing of the data was challenging and was addressed by transforming the relevant dataset and interpolating the missing values. The selection and application of the most appropriate temporal modelling technique, which relies on the quality of available dataset, is crucial for the management of legacy contaminated sites to guide successful mitigation measures to avoid significant environmental and human health implications.</p

    Supplementary information files for article: 'Regional variability in the atmospheric nitrogen deposition signal and its transfer to the sediment record in Greenland lakes'

    No full text
    Supplementary information files for article: 'Regional variability in the atmospheric nitrogen deposition signal and its transfer to the sediment record in Greenland lakes'.Abstract: Disruption of the nitrogen cycle is a major component of global environmental change. δ15N in lake sediments is increasingly used as a measure of reactive nitrogen input but problematically, the characteristic depleted δ15N signal is not recorded at all sites. We used a regionally replicated sampling strategy along a precipitation and N‐deposition gradient in SW Greenland to assess the factors determining the strength of δ15N signal in lake sediment cores. Analyses of snowpack N and δ15N‐NO3 and water chemistry were coupled with bulk sediment δ15N. Study sites cover a gradient of snowpack δ15N (ice sheet: −6‰; coast urn:x-wiley:00243590:media:lno10936:lno10936-math-000110‰), atmospheric N deposition (ice sheet margin: ∼ 0.2 kg ha−1 yr−1; coast: 0.4 kg ha−1 yr−1) and limnology. Three 210Pb‐dated sediment cores from coastal lakes showed a decline in δ15N of ca. urn:x-wiley:00243590:media:lno10936:lno10936-math-00021‰ from ∼ 1860, reflecting the strongly depleted δ15N of snowpack N, lower in‐lake total N (TN) concentration (∼ 300 μg N L−1) and a higher TN‐load. Coastal lakes have 3.7–7.1× more snowpack input of nitrate than inland sites, while for total deposition the values are 1.7–3.6× greater for lake and whole catchment deposition. At inland sites and lakes close to the ice‐sheet margin, a lower atmospheric N deposition rate and larger in‐lake TN pool resulted in greater reliance on N‐fixation and recycling (mean sediment δ15N is 0.5–2.5‰ in most inland lakes; n = 6). The primary control of the transfer of the atmospheric δ15N deposition signal to lake sediments is the magnitude of external N inputs relative to the in‐lake N‐pool.</div

    The Arctic in the 21st century: changing biogeochemical linkages across a paraglacial landscape of Greenland

    No full text
    The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet, through moisture stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change due to rapid regional warming since 2000. Here we describe changes in the eco- and geomorphic systems at a range of timescales, and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and importantly, how these might change in the near future as the Arctic is expected to continue to warm
    corecore