23 research outputs found

    Making Aid Effectiveness Work for Family Planning and Reproductive Health

    Get PDF
    This Population Action International Working Paper analyzes the five principles of aid effectiveness -- country ownership, alignment, harmonization, managing for results, and mutual accountability -- from a family planning and reproductive health perspective. It also describes how the Paris Declaration has changed the ways of managing and delivering aid; highlights entry points and obstacles for champions working to improve funding and policies; and makes recommendations for civil society organizations, governments and donors

    Re-Costing Cairo: Revised Estimate of the Resource Requirements to Achieve the ICPD Goals

    Get PDF
    Achieving universal access to reproductive health, including family planning services and supplies, is essential to ensuring the health and well-being of women and their families. Poor reproductive health is the leading cause of death and disability among women in their childbearing years. An estimated 201 million women in developing countries want to delay or stop childbearing, but lack effective contraceptives. Satisfying their unmet need for family planning would avert 52 million unintended pregnancies each year, saving more than 1.5 million lives and preventing 505,000 children from losing their mothers.In 2005 the World Summit -- a follow-up to the meetings that launched the Millennium Development Goals (MDGs) -- reaffirmed the importance of sexual and reproductive health and rights by addingTarget 5.B.: Achieve universal access to reproductive health by 2015 as part of MDG 5: Improving Maternal Health. Contraceptive prevalence rate and unmet need for family planning are indicators for monitoring progress towards this target

    Funding Common Ground: Cost Estimates for International Reproductive Health

    Get PDF
    There are over a dozen estimates of the financial resources needed to improve reproductive health used by the reproductive health community. Lack of understanding of estimates currently in circulation can lead to fragmented advocacy and weak financial prioritization of reproductive health. Population Action International is releasing a report, Funding Common Ground: Cost Estimates for International Reproductive Health to help advocates and policy makers better understand the funding needed to achieve the ICPD and MDG goal of universal access to reproductive health. A clear sense of financial requirements is essential to carry out policy advocacy and plan to fulfill unmet needs

    Investigating Pseudo-nitzschia australis introduction to the Gulf of Maine with observations and models

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K. A., McGillicuddy Jr, D. J., Ralston, D. K., & Shankar, S. Investigating Pseudo-nitzschia australis introduction to the Gulf of Maine with observations and models. Continental Shelf Research, 228, (2021): 104493, https://doi.org/10.1016/j.csr.2021.104493.In 2016, an unprecedented Pseudo-nitzschia australis bloom in the Gulf of Maine led to the first shellfishery closures due to domoic acid in the region's history. In this paper, potential introduction routes of P. australis are explored through observations, a hydrodynamic model, and a Lagrangian particle tracking model. Based on particle tracking experiments, the most likely source of P. australis to the Gulf of Maine was the Scotian Shelf. However, in 2016, connectivity between the Scotian Shelf and the bloom region was not significantly different from the other years between 2012 and 2019, nor were temperature conditions more favorable for P. australis growth. Observations indicated changes on the Scotian Shelf in 2016 preceded the introduction of P. australis: increased bottom salinity and decreased surface salinity. The increased bottom salinity on the shelf may be linked to anomalously saline water observed near the coast of Maine in 2016 via transport through Northeast Channel. The changes in upstream water mass properties may be related to the introduction of P. australis, and could be the result of either increased influence of the Labrador Current or increased outflow from the Gulf of St. Lawrence. The ultimate source of P. australis remains unknown, although the species has previously been observed in the eastern North Atlantic, and connectivity across the ocean is possible via a subpolar route. Continued and increased monitoring is warranted to track interannual Pseudo-nitzschia persistence in the Gulf of Maine, and sampling on the Scotian Shelf should be conducted to map upstream P. australis populations.This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution

    Pseudo-nitzschia bloom dynamics in the Gulf of Maine: 2012-2016

    Get PDF
    © The Author(s), 2019. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K. A., Anderson, D. M., McGillicuddy, D. J.,Jr, Ralston, D. K., & Townsend, D. W. Pseudo-nitzschia bloom dynamics in the Gulf of Maine: 2012-2016. Harmful Algae, 88, (2019): 101656, doi:10.1016/j.hal.2019.101656.The toxic diatom genus Pseudo-nitzschia is a growing presence in the Gulf of Maine (GOM), where regionally unprecedented levels of domoic acid (DA) in 2016 led to the first Amnesic Shellfish Poisoning closures in the region. However, factors driving GOM Pseudo-nitzschia dynamics, DA concentrations, and the 2016 event are unclear. Water samples were collected at the surface and at depth in offshore transects in summer 2012, 2014, and 2015, and fall 2016, and a weekly time series of surface water samples was collected in 2013. Temperature and salinity data were obtained from NERACOOS buoys and measurements during sample collection. Samples were processed for particulate DA (pDA), dissolved nutrients (nitrate, ammonium, silicic acid, and phosphate), and cellular abundance. Species composition was estimated via Automated Ribosomal Intergenic Spacer Analysis (ARISA), a semi-quantitative DNA finger-printing tool. Pseudo-nitzschia biogeography was consistent in the years 2012, 2014, and 2015, with greater Pseudo-nitzschia cell abundance and P. plurisecta dominance in low-salinity inshore samples, and lower Pseudo-nitzschia cell abundance and P. delicatissima and P. seriata dominance in high-salinity offshore samples. During the 2016 event, pDA concentrations were an order of magnitude higher than in previous years, and inshore-offshore contrasts in biogeography were weak, with P. australis present in every sample. Patterns in temporal and spatial variability confirm that pDA increases with the abundance and the cellular DA of Pseudo-nitzschia species, but was not correlated with any one environmental factor. The greater pDA in 2016 was caused by P. australis – the observation of which is unprecedented in the region – and may have been exacerbated by low residual silicic acid. The novel presence of P. australis may be due to local growth conditions, the introduction of a population with an anomalous water mass, or both factors. A definitive cause of the 2016 bloom remains unknown, and continued DA monitoring in the GOM is warranted.This research was funded by the National Science Foundation (Grant Numbers OCE-1314642 and OCE-1840381), the National Institute of Environmental Health Sciences (Grant Numbers P01 ES021923-01 and P01 ES028938-01), the Woods Hole Center for Oceans and Human Health, the Academic Programs Office of the Woods Hole Oceanographic Institution, the National Oceanic and Atmospheric Administration's Ecology and Oceanography of HABs (ECOHAB) project (contribution number ECO947), and the National Oceanic and Atmospheric Administration’s HAB Event Response Program (Grant numbers NA06NOS4780245 and NA09NOS4780193). We thank Maura Thomas at the University of Maine for support with nutrient collection and analysis. We also thank Kohl Kanwit at the Maine Department of Marine Resources, Anna Farrell, Jane Disney, and Hannah Mogenson at the Mt. Desert Island Biological Laboratory, Steve Archer at Bigelow Laboratory for Ocean sciences, and Bruce Keafer at the Woods Hole Oceanographic Institution for their work collecting samples and data used in the study. We also thank Maya Robert, Christina Chadwick, Laura Markley, Stephanie Keller Abbe, Karen Henschen, Emily Olesin, Steven Bruzek, Sheila O'Dea, April Granholm, Leanne Flewelling, and Elizabeth Racicot at the Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute for processing samples for DA, DNA-based analyses, and cellular abundance.[CG

    Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K., Ralston, D., McGillicuddy, D., Stock, C., Alexander, M., & Curchitser, E. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. Journal of Marine Systems, 230, (2022): 103737, https://doi.org/10.1016/j.jmarsys.2022.103737.Worldwide, warming ocean temperatures have contributed to extreme harmful algal bloom events and shifts in phytoplankton species composition. In 2016 in the Gulf of Maine (GOM), an unprecedented Pseudo-nitzschia bloom led to the first domoic-acid induced shellfishery closures in the region. Potential links between climate change, warming temperatures, and the GOM Pseudo-nitzschia assemblage, however, remain unexplored. In this study, a global climate change projection previously downscaled to 7-km resolution for the Northwest Atlantic was further refined with a 1–3-km resolution simulation of the GOM to investigate the effects of climate change on HAB dynamics. A 25-year time slice of projected conditions at the end of the 21st century (2073–2097) was compared to a 25-year hindcast of contemporary ocean conditions (1994–2018) and analyzed for changes to GOM inflows, transport, and Pseudo-nitzschia australis growth potential. On average, climate change is predicted to lead to increased temperatures, decreased salinity, and increased stratification in the GOM, with the largest changes occurring in the late summer. Inflows from the Scotian Shelf are projected to increase, and alongshore transport in the Eastern Maine Coastal Current is projected to intensify. Increasing ocean temperatures will likely make P. australis growth conditions less favorable in the southern and western GOM but improve P. australis growth conditions in the eastern GOM, including a later growing season in the fall, and a longer growing season in the spring. Combined, these changes suggest that P. australis blooms in the eastern GOM could intensify in the 21st century, and that the overall Pseudo-nitzschia species assemblage might shift to warmer-adapted species such as P. plurisecta or other Pseudo-nitzschia species that may be introduced.This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution

    Current Practices in Global/International Advanced Pharmacy Practice Experiences: Home/Host Country or Site/Institution Considerations

    Get PDF
    International outreach by schools and colleges of pharmacy is increasing. In this paper, we provide current practice guidelines to establish and maintain successful global/international advanced pharmacy practice experiences (G/I APPEs) with specific recommendations for home/host country and host site/institution. The paper is based on a literature review (2000-2014) in databases and Internet searches with specific keywords or terms. Educational documents such as syllabi and memoranda of understanding (MoUs) from pharmacy programs were also examined. In addition, a preliminary draft was developed and the findings and recommendations were reviewed in a 90-minute roundtable discussion at the 2014 American Association of Colleges of Pharmacy Annual Meeting. Recommendations for the host country include travel considerations (eg, passport, visa, air travel), safety, housing, transportation, travel alerts and warnings, health issues, and financial considerations. For the home country, considerations for establishment of G/I APPE site (eg, vetting process, MoU, site expectations) are described. The paper is a resource for development of new G/I APPEs and provides guidance for continuous quality improvement of partnerships focusing on G/I pharmacy education

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore