2 research outputs found

    Table_1_Measuring equality in access to urban parks: A big data analysis from Chengdu.XLSX

    No full text
    Spatial equality of parks is a significant issue in environmental justice studies. In cities with high-density development and limited land resources, this study uses a supply-demand adjusted two-step floating catchment area model (2SFCA), paying attention to residents' subjective preferences and psychological accessibility. It assesses equality of access to urban parks from two dimensions: spatial equality and quantitative equality at a fine scale of 100 × 100 m grid resolution. The spatial equality of urban parks in Chengdu is measured under different transportation modes (walking, cycling, and driving) based on multi-source geospatial big data and machine learning approaches. The results show: (1) There were significant differences in the spatial distribution of park accessibility under different modes of transportation. The spatial distribution under walking was significantly influenced by the park itself, while the distribution of rivers significantly influenced the spatial distribution under cycling and driving; (2) Accessibility to urban parks was almost universally equal in terms of driving, relatively equal in terms of cycling, and seriously unequal in terms of walking; (3) Spatial local autocorrelation analysis shows that park accessibility tended to be significantly clustered, with little spatial variation; and (4) The supply and demand of urban parks were relatively equal. The results can help urban planners to formulate effective strategies to alleviate spatial inequality more reasonably and precisely. The applied research methods can further improve the system of scientific evaluation from a new perspective.</p

    Data_Sheet_1_Measuring equality in access to urban parks: A big data analysis from Chengdu.docx

    No full text
    Spatial equality of parks is a significant issue in environmental justice studies. In cities with high-density development and limited land resources, this study uses a supply-demand adjusted two-step floating catchment area model (2SFCA), paying attention to residents' subjective preferences and psychological accessibility. It assesses equality of access to urban parks from two dimensions: spatial equality and quantitative equality at a fine scale of 100 × 100 m grid resolution. The spatial equality of urban parks in Chengdu is measured under different transportation modes (walking, cycling, and driving) based on multi-source geospatial big data and machine learning approaches. The results show: (1) There were significant differences in the spatial distribution of park accessibility under different modes of transportation. The spatial distribution under walking was significantly influenced by the park itself, while the distribution of rivers significantly influenced the spatial distribution under cycling and driving; (2) Accessibility to urban parks was almost universally equal in terms of driving, relatively equal in terms of cycling, and seriously unequal in terms of walking; (3) Spatial local autocorrelation analysis shows that park accessibility tended to be significantly clustered, with little spatial variation; and (4) The supply and demand of urban parks were relatively equal. The results can help urban planners to formulate effective strategies to alleviate spatial inequality more reasonably and precisely. The applied research methods can further improve the system of scientific evaluation from a new perspective.</p
    corecore