109 research outputs found

    Correlation of high energy muons with primary composition in extensive air shower

    Get PDF
    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed

    Proportional drift tubes for large area muon detectors

    Get PDF
    A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire

    Development of an intense positron source using a crystal--amorphous hybrid target for linear colliders

    Full text link
    In a conventional positron source driven by a few GeV electron beam, a high amount of heat is loaded into a positron converter target to generate intense positrons required by linear colliders, and which would eventually damage the converter target. A hybrid target, composed of a single crystal target as a radiator of intense gamma--rays, and an amorphous converter target placed downstream of the crystal, was proposed as a scheme which could overcome the problem.This paper describes the development of an intense positron source with the hybrid target. A series of experiments on positron generation with the hybrid target has been carried out with a 8--GeV electron beam at the KEKB linac. We observed that positron yield from the hybrid target increased when the incident electron beam was aligned to the crystal axis and exceeded the one from the conventional target with the converter target of the same thickness, when its thickness is less than about 2 radiation length. The measurements in the temperature rise of the amorphous converter target was successfully carried out by use of thermocouples. These results lead to establishment to the evaluation of the hybrid target as an intense positron source.Comment: 17pages, 10figure

    Enhancement of the Positron Intensity by a Tungsten Single Crystal Target at the KEKB Injector Linac

    No full text
    International audienceA new tungsten single-crystalline positron target has been successfully employed for generation of the intense positron beam at the KEKB injector linac in September 2006. The target is composed of a tungsten single-crystal with a thickness of 10.5 mm. The positron production target is bombarded at an incident electron energy of 4 GeV, and the produced positrons are collected and accelerated up to the final injection energy of 3.5 GeV in the succeeding sections. A conventional tungsten plate with a thickness of 14 mm has been used previously, and the conversion efficiency (Ne^+/Ne^-), the ratio between the number of positrons (Ne^+) captured in the positron capture section and the number of the incident electrons (Ne^-), was 0.20 on average. By replacing the tungsten plate with the tungsten crystal, it increased to 0.25 on average. The increase of the conversion efficiency has boosted the positron intensity to its maximum since the beginning of KEKB operation in 1999. Now this new positron source is stably operating and is contributing to increasing the integrated luminosity of the KEKB B-factory

    Experimental study of positron production from a 2.55-mm-thick silicon crystal target using 8-GeV channeling electron beams with high-bunch charges

    No full text
    We have investigated quenching phenomena of channeling radiation through positron production from a silicon crystal hit by a single-bunch electron beam with high-bunch charge at the 8-GeV electron/positron injector linac. The crystal axis, left angle bracket1 1 0right-pointing angle bracket, was aligned to the electron beam with a precise goniometer, and positrons produced in the forward direction with a momentum of 20 MeV/c were detected with a magnetic spectrometer. Positron yields were measured by varying the charge in a bunch with a typical bunch length of not, vert, similar10 ps from 0.1 nC to 2 nC. The corresponding instantaneous current density ranged from 0.15 Ă— 104 to 1.2 Ă— 104 A/cm2. The results show that, at these current densities, the positron yield is proportional to the bunch charge within the experimental accuracy, which implies that no non-linear phenomena are observed in channeling radiation
    • …
    corecore