42 research outputs found

    Polymerization of different lignins by laccase

    No full text
    In this study the oxidative polymerization of different lignins, i.e. Flax Soda lignin, Spruce EMAL, and Eucalyptus Dioxane lignin by Trametes hirsuta laccase was compared. Initially the structures of the different lignins were compared by Fourier transform infrared spectroscopy. The reactivity of laccase with the different types of lignins in the absence of mediators was examined and verified by oxygen consumption measurements. The molecular weight distributions of treated and untreated lignins were determined by two different size exclusion chromatography methods. Furthermore, the potential of matrix-assisted laser desorption/ionisation-time of flight-mass spectroscopy for determination of the absolute molecular weights of the different lignins was evaluated. The data showed that all the technical lignins could be activated and polymerized by laccase to different degrees. The efficiency as indicated by measurements of the degree of polymerization was found to increase in the order of Spruce EMAL <Eucalyptus Dioxane lignin <Flax Soda lignin. Overall, this data supplies foundations for using enzymes more efficiently in the enzymatic upgrading of lignin

    High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction

    No full text
    A new process for preparing thin cellulose nanofibril (CNF) filaments (thickness of 16 µm) was investigated by utilizing the dry spinning approach. In the process, CNF hydrogel was extruded through a fine nozzle onto an adhesion controlled capstan (drum) with low friction (slippery surface) at a speed of up to 11 m/s. The utilized capstan enables excellent line speed control when the slippery surface is applied, and prevents drying shrinkage of the spun filaments. The mechanical properties of prepared filaments can be optimized with the stretch ratio, the ratio of the speed of the drum surface, and the CNF jet flow. The developed method allows for manufacturing thin CNF filaments with an elevated spinning rate in a more controlled manner
    corecore