68 research outputs found

    Viral antibody dynamics in a chiropteran host

    Get PDF
    1. Bats host many viruses that are significant for human and domestic animal health, but the dynamics of these infections in their natural reservoir hosts remain poorly elucidated.<p></p> 2. In these, and other, systems, there is evidence that seasonal life-cycle events drive infection dynamics, directly impacting the risk of exposure to spillover hosts. Understanding these dynamics improves our ability to predict zoonotic spillover from the reservoir hosts.<p></p> 3. To this end, we followed henipavirus antibody levels of >100 individual E. helvum in a closed, captive, breeding population over a 30-month period, using a powerful novel antibody quantitation method.<p></p> 4. We demonstrate the presence of maternal antibodies in this system and accurately determine their longevity. We also present evidence of population-level persistence of viral infection and demonstrate periods of increased horizontal virus transmission associated with the pregnancy/lactation period.<p></p> 5.The novel findings of infection persistence and the effect of pregnancy on viral transmission, as well as an accurate quantitation of chiropteran maternal antiviral antibody half-life, provide fundamental baseline data for the continued study of viral infections in these important reservoir hosts

    Antibodies against Lagos Bat Virus in Megachiroptera from West Africa

    Get PDF
    To investigate the presence of Lagos bat virus (LBV)–specific antibodies in megachiroptera from West Africa, we conducted fluorescent antibody virus neutralization tests. Neutralizing antibodies were detected in Eidolon helvum (37%), Epomophorus gambianus (3%), and Epomops buettikoferi (33%, 2/6) from Ghana. These findings confirm the presence of LBV in West Africa

    Manipulating vector transmission reveals local processes in bacterial communities of batss

    Get PDF
    Infectious diseases result from multiple interactions among microbes and hosts, but community ecology approaches are rarely applied. Manipulation of vector populations provides a unique opportunity to test the importance of vectors in infection cycles while also observing changes in pathogen community diversity and species interactions. Yet for many vector-borne infections in wildlife, a biological vector has not been experimentally verified and few manipulative studies have been performed. Using a captive colony of fruit bats in Ghana, we observed changes in the community of Bartonella bacteria over time after the decline and subsequent reintroduction of bat flies. With reduced transmission, community changes were attributed to ecological drift and potential selection through interspecies competition mediated by host immunity. This work demonstrated that forces maintaining diversity in communities of free-living macroorganisms act in similar ways in communities of symbiotic microorganisms, both within and among hosts. Additionally, this study is the first to experimentally test the role of bat flies as vectors of Bartonella species

    What is stirring in the reservoir? Modelling mechanisms of henipavirus circulation in fruit bat hosts

    Get PDF
    Pathogen circulation among reservoir hosts is a precondition for zoonotic spillover. Unlike the acute, high morbidity infections typical in spillover hosts, infected reservoir hosts often exhibit low morbidity and mortality. Although it has been proposed that reservoir host infections may be persistent with recurrent episodes of shedding, direct evidence is often lacking. We construct a generalized SEIR (susceptible, exposed, infectious, recovered) framework encompassing 46 sub-models representing the full range of possible transitions among those four states of infection and immunity. We then use likelihood-based methods to fit these models to nine years of longitudinal data on henipavirus serology from a captive colony of Eidolon helvum bats in Ghana. We find that reinfection is necessary to explain observed dynamics; that acute infectious periods may be very short (hours to days); that immunity, if present, lasts about 1–2 years; and that recurring latent infection is likely. Although quantitative inference is sensitive to assumptions about serology, qualitative predictions are robust. Our novel approach helps clarify mechanisms of viral persistence and circulation in wild bats, including estimated ranges for key parameters such as the basic reproduction number and the duration of the infectious period. Our results inform how future field-based and experimental work could differentiate the processes of viral recurrence and reinfection in reservoir hosts. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’

    Long-Term Survival of an Urban Fruit Bat Seropositive for Ebola and Lagos Bat Viruses

    Get PDF
    Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur

    Domesticated animals as hosts of henipaviruses and filoviruses: A systematic review

    Get PDF
    Bat-borne viruses carry undeniable risks to the health of human beings and animals, and there is growing recognition of the need for a 'One Health' approach to understand their frequently complex spill-over routes. While domesticated animals can play central roles in major spill- over events of zoonotic bat-borne viruses, for example during the pig- amplified Malaysian Nipah virus outbreak of 1998-1999, the extent of their potential to act as bridging or amplifying species for these viruses has not been characterised systematically. This review aims to compile current knowledge on the role of domesticated animals as hosts of two types of bat-borne viruses, henipaviruses and filoviruses. A systematic literature search of these virus-host interactions in domesticated animals identified 72 relevant studies, which were categorised by year, location, design and type of evidence generated. The review then focusses on Africa as a case study, comparing research efforts in domesticated animals and bats with the distributions of documented human cases. Major gaps remain in our knowledge of the potential ability of domesticated animals to contract or spread these zoonoses. Closing these gaps will be necessary to fully evaluate and mitigate spill-over risks of these viruses, especially with global agricultural intensification

    Antibodies against Lagos Bat Virus in Megachiroptera from West Africa

    Get PDF
    To investigate the presence of Lagos bat virus (LBV)–specific antibodies in megachiroptera from West Africa, we conducted fluorescent antibody virus neutralization tests. Neutralizing antibodies were detected in Eidolon helvum (37%), Epomophorus gambianus (3%), and Epomops buettikoferi (33%, 2/6) from Ghana. These findings confirm the presence of LBV in West Africa

    Bat trait, genetic and pathogen data from large-scale investigations of African fruit bats, Eidolon helvum.

    Get PDF
    Bats, including African straw-coloured fruit bats (Eidolon helvum), have been highlighted as reservoirs of many recently emerged zoonotic viruses. This common, widespread and ecologically important species was the focus of longitudinal and continent-wide studies of the epidemiological and ecology of Lagos bat virus, henipaviruses and Achimota viruses. Here we present a spatial, morphological, demographic, genetic and serological dataset encompassing 2827 bats from nine countries over an 8-year period. Genetic data comprises cytochrome b mitochondrial sequences (n=608) and microsatellite genotypes from 18 loci (n=544). Tooth-cementum analyses (n=316) allowed derivation of rare age-specific serologic data for a lyssavirus, a henipavirus and two rubulaviruses. This dataset contributes a substantial volume of data on the ecology of E. helvum and its viruses and will be valuable for a wide range of studies, including viral transmission dynamic modelling in age-structured populations, investigation of seasonal reproductive asynchrony in wide-ranging species, ecological niche modelling, inference of island colonisation history, exploration of relationships between island and body size, and various spatial analyses of demographic, morphometric or serological data.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/sdata.2016.4

    Achimota Pararubulavirus 3: A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus

    Get PDF
    Bats are an important source of viral zoonoses, including paramyxoviruses. The paramyxoviral Pararubulavirus genus contains viruses mostly derived from bats that are common, diverse, distributed throughout the Old World, and known to be zoonotic. Here, we describe a new member of the genus Achimota pararubulavirus 3 (AchPV3) and its isolation from the urine of African straw-coloured fruit bats on primary bat kidneys cells. We sequenced and analysed the genome of AchPV3 relative to other Paramyxoviridae, revealing it to be similar to known pararubulaviruses. Phylogenetic analysis of AchPV3 revealed the failure of molecular detection in the urine sample from which AchPV3 was derived and an attachment protein most closely related with AchPV2—a pararubulavirus known to cause cross-species transmission. Together these findings add to the picture of pararubulaviruses, their sources, and variable zoonotic potential, which is key to our understanding of host restriction and spillover of bat-derived paramyxoviruses. AchPV3 represents a novel candidate zoonosis and an important tool for further study

    The Gambian Epauletted Fruit Bat Shows Increased Genetic Divergence in the Ethiopian Highlands and in an Area of Rapid Urbanisation

    Get PDF
    The Gambian epauletted fruit bat (Epomophorus gambianus) is an abundant species that roosts in both urban and rural settings. The possible role of E. gambianus as a reservoir host of zoonotic diseases underlines the need to better understand the species movement patterns. So far, neither observational nor phylogenetic studies have identified the dispersal range or behavior of this species. Comparative analyses of mitochondrial and nuclear markers from 20 localities across the known distribution of E. gambianus showed population panmixia, except for the populations in Ethiopia and southern Ghana (Accra and Ve‐Golokwati). The Ethiopian population may be ancestral and is highly divergent to the species across the rest of its range, possibly reflecting isolation of an ancient colonization along an east–west axis. Mitochondrial haplotypes in the Accra population display a strong signature of a past bottleneck event; evidence of either an ancient or recent bottleneck using microsatellite data, however, was not detected. Demographic analyses identified population expansion in most of the colonies, except in the female line of descent in the Accra population. The molecular analyses of the colonies from Ethiopia and southern Ghana show gender dispersal bias, with the mitochondrial DNA fixation values over ten times those of the nuclear markers. These findings indicate free mixing of the species across great distances, which should inform future epidemiological studies
    corecore