23,901 research outputs found
Recommended from our members
The impact of resolution on the adjustment and decadal variability of the Atlantic Meridional Overturning Circulation in a coupled climate model
Variations in the Atlantic Meridional Overturning Circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC.
In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic Sea Surface Temperatures (SSTs) to MOC variations is relatively robust - in pattern if not in magnitude - across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models
Experimental L-band SST satellite communications/surveillance terminal study. Volume 1 - Study summary
Study of design for experimental L band supersonic transport communications/surveillance termina
General Tobacco Policy Survey Questions from the Tobacco Baling Survey
Crop Production/Industries,
The Rocketdyne Multifunction Tester. Part 1: Test Method
The Rocketdyne Multifunction Tester is a general purpose test apparatus which utilizes axial and radial magnetic bearings as shaft excitation devices. The tester is modular in design so that different seal and bearing packages can be tested on the same test stand. The tester will be used for rotordynamic coefficient extraction, as well as life and fluid/material compatibility evaluations. Use of a magnetic bearing as a shaft excitation device opens up many possibilities for shaft excitation and rotordynamic coefficient extraction. In addition to describing the basic apparatus, some of the excitation and extraction methods are described. Some of the excitation methods to be discussed include random, aperiodic, harmonic, impulse and chirp
Recommended from our members
ESD ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks
The purpose of the Intergovernmental Panel on Climate Change (IPCC) is to provide policy-relevant
assessments of the scientific evidence about climate change. Policymaking necessarily involves risk assessments,
so it is important that IPCC reports are designed accordingly. This paper proposes a specific idea, illustrated with examples, to improve the contribution of IPCC Working Group I to informing climate risk assessments
Electrical and Mechanical Properties of new Recyclable Power Cable Insulation Materials based upon Polyethylene Blends
Chemically crosslinked polyethylene (XLPE) has been used as electrical insulation for power cables since the 1970s due to its favourable combination of electrical and mechanical properties. However, as the electrical engineering community has become increasingly aware of the life cycle environmental impacts, XLPE has come under scrutiny for its lack of recyclability and the high process energies used in its manufacture. Although technologies are being developed to facilitate the re-use of XLPE at the end of its initial service life, the use of this material is inferior to fully recyclable and low process energy alternatives. In this investigation, we concentrated on the use of binary blends of linear and branched polyethylene (LPE / BPE) as potential replacement materials for XLPE, since such systems have the potential to combine comparable mechanical properties and enhanced breakdown strength with good recyclability. We compare the thin film AC ramp breakdown behaviour of blends as a function of temperature up to 97 oC. These consist of the same BPE in virgin and crosslinked states and in a blend with 20wt% LPE. These data are augmented with dynamic mechanical analysis. In concert, these data indicate that with appropriate morphological control the blended thermoplastic material exhibits superior properties to XLPE under conventional operating conditions and may even be suitable for higher temperature operation than XLPE. The paper will discuss the importance of polymer blending and blend physical properties in the context of the process requirements and the implications for cable manufacture and on cable electrical and environmental performance in comparison with XLPE
Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation
We present here an investigation of the chemical composition of the various regions in the core of the
Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the
1.3 mm (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation
and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry.
A global analysis of the observed abundances shows that the markedly different chemical compositions of
the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving,
initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition
of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C_3H_2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven toward kinetic equilibrium most naturally explains the prominence of fully hydrogenated
N-containing species like HCN, NH_3 , CH_3CN, and C_2H_5CN in the hot core. The clumpy nature of the outflow is illustrated by the high-velocity emission observed from easily decomposed molecules such as H_2CO. Areas immediately adjacent to the shocked core in which the cooler, ion-rich gas of the surrounding molecular cloud is mixed with water/oxygen rich gas from the plateau source are proposed to give rise to the enhanced abundances of complex internal rotors such as CH_30H, HCOOCH_3 , and CH_30CH_3 whose line widths are similar to carbon-rich species such as CN and CCH found in the extended ridge, but whose rotational temperatures are somewhat higher and whose spatial extents are much more compact
- …
