27,333 research outputs found
A wave-mechanical treatment of the Mills-Nixon effect
The Mills-Nixon effect has been examined by a very simple wave-mechanical treatment. This has led to the conclusion that the effect of saturated side rings upon the ratio of the coefficients of the wave-functions of the two Kekulé structures is relatively small, being not more than about 6 per cent., and that the benzene ring retains the greater part of its stabilising resonance energy. Nevertheless, making the reasonable assumption that the ratio of the activation energies, for reaction as either one of the two Kekulé structures, depends upon the square of the ratio of coefficients, it is possible to account for the experimental facts. The effect which bending two valencies has upon the angles between the other valencies projecting from the benzene ring is found to be very small
Small Gas Turbine Combustor Primary Zone Study
The combustion research program, small gas turbine combustor primary zone study is summarized. The basic elements of a design methodology program to obtain the maximum performance potential of small reverse-flow annular combustors is described. Three preferred combustion design approaches for internal flame stabilization patterns were selected. Design features are incorporated in the combustors to address the performance limiting problem areas associated with smaller annular combustors. Performance is predicted by using a 3-D aerodynamic/chemical kinetic elliptic flow analysis, initially developed by Garrett Corporation for the USARTL. It is shown that the analytical flow field predictive models provide a useful design tool for understanding the combustion performance of a small reverse flow annular combustor
Spacecraft high-voltage power supply construction
The design techniques, circuit components, fabrication techniques, and past experience used in successful high-voltage power supplies for spacecraft flight systems are described. A discussion of the basic physics of electrical discharges in gases is included and a design rationale for the prevention of electrical discharges is provided. Also included are typical examples of proven spacecraft high-voltage power supplies with typical specifications for design, fabrication, and testing
Phosphonium chloride for thermal storage
Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained
Regenerable metallic oxide systems for removal of carbon dioxide: A concept
Design concepts for portable canisters for removal of carbon dioxide are described. One is screen pack configuration consisting of brazed rectangular canister with four metal oxide packs inserted. Other is radial flow canister with perforated central tube. Methods of production and operating principles are presented
NICE DSU Technical Support Document 3: Heterogeneity: Subgroups, Meta-Regression, Bias and Bias-Adjustment
Advanced extravehicular protective system Interim report, 1 Jul. 1970 - 31 May 1971
Regenerable portable life support systems concepts for EVA use in 1980 and technology assessmen
Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation
We present here an investigation of the chemical composition of the various regions in the core of the
Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the
1.3 mm (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation
and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry.
A global analysis of the observed abundances shows that the markedly different chemical compositions of
the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving,
initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition
of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C_3H_2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven toward kinetic equilibrium most naturally explains the prominence of fully hydrogenated
N-containing species like HCN, NH_3 , CH_3CN, and C_2H_5CN in the hot core. The clumpy nature of the outflow is illustrated by the high-velocity emission observed from easily decomposed molecules such as H_2CO. Areas immediately adjacent to the shocked core in which the cooler, ion-rich gas of the surrounding molecular cloud is mixed with water/oxygen rich gas from the plateau source are proposed to give rise to the enhanced abundances of complex internal rotors such as CH_30H, HCOOCH_3 , and CH_30CH_3 whose line widths are similar to carbon-rich species such as CN and CCH found in the extended ridge, but whose rotational temperatures are somewhat higher and whose spatial extents are much more compact
- …
