132 research outputs found

    Genetic matching of invasive populations of the African tulip tree, Spathodea campanulata Beauv.(Bignoniaceae), to their native distribution: Maximising the likelihood of selecting host-compatible biological control agents

    Get PDF
    Spathodea campanulata Beauv (Bignoniaceae) has become a highly damaging environmental and agricultural weed in the Pacific Islands. It has been targeted for biological control due to the costly and inefficient nature of physical and chemical control methods. Determining the origin of weed populations has been increasingly recognised as an important component of successful biological control programmes, and may be important for the biological control of S. campanulata due to the high degree of morphological variability within the species, as well as the broad native distribution. Genetic matching, using inter-simple sequence repeats (ISSR’s), and morphological data found support for invasive Pacific Island S. campanulata plants originating from West Africa. Pacific and West African plants were genetically most similar, and were differentiated from native plants from East/Central Africa by PCA and Bayesian-clustering (STRUCTURE) analyses. Genetic data was corroborated by morphological data which showed that West African and Pacific Islands plants had more sparsely pubescent leaves compared to plants from East/Central Africa. Populations in South Africa, where the plant is introduced but not problematic, originated from a different source population than those in the Pacific Islands, probably in East/Central Africa. A greater sampling effort is required before the origin of the South African populations can be determined with certainty. Herbivores and pathogens for the Pacific Islands should be collected from West Africa as they are more likely to be compatible with S. campanulata plants in this region

    Evaluating the efficacy of Hypogeococcus sp. as a biological control agent of the cactaceous weed Cereus jamacaru in South Africa

    Get PDF
    We evaluated the efficacy of Hypogeococcus sp. (Hemiptera: Pseudococcidae) as a biological control agent of the cactaceous weed Cereus jamacaru De Candolle (Queen of the Night cactus) in South Africa. This weed has been described as being under complete biological control due to the action of Hypogeococcus sp., although no formal post-release evaluation had been conducted prior to this study. Biological control was associated with significant reductions in fruiting, plant survival and plant densities, while plant population age structures were negatively affected. Weed populations infected by Hypogeococcus sp. were typified by low or non-existent recruitment and are expected to diminish with time. Populations where Hypogeococcus sp. was absent displayed extensive recruitment, and are predicted to expand or self-replace, if left unchecked. These data indicate that Hypogeococcus sp. has a significant negative effect on C. jamacaru at the individual plant and population level, and given sufficient time provides complete biological control over this weed in South Africa

    Grasses as suitable targets for classical weed biological control

    Get PDF
    Grasses are amongst the most abundant and environmentally damaging invasive weeds worldwide. Biological control is frequently employed as a sustainable and cost-effective management strategy for many weeds. However, grasses have not been actively pursued as targets for classical weed biological control due to a perceived lack of sufficiently specialised and damaging natural enemies to use as biological control agents. There are also concerns that the risk posed to economically important crop/pasture species and closely-related native species is too great to consider implementing biological control for invasive grasses. In this paper, we review the literature and demonstrate that grasses can possess suitably host-specific and damaging natural enemies to warrant consideration as potential biological control agents. The risk of grass biological control is no greater than for other weedy taxa if practitioners follow appropriately rigorous risk assessments protocols

    Progress and prospects for the biological control of invasive alien grasses Poaceae) in South Africa

    Get PDF
    Historically, invasive alien grasses have not been considered a major threat in South Africa, and as a result, very few resources are allocated to their management. However, there is an increasing awareness of the severe environmental and socio-economic impacts of invasive grasses and the need for appropriate management options for their control. South Africa has a long history of successfully implementing weed biological control (biocontrol) to manage invasive alien plants, however much like the rest of the world, invasive grasses do not feature prominently as targets for biocontrol. The implementation and early indicators of success of the few grass biocontrol programmes globally and the finding that grasses can be suitable targets, suggests that biocontrol could start to play an important role in managing invasive alien grasses in South Africa. In this paper, we evaluated the prospects for implementing novel grass biocontrol projects over the next ten years against 48 grasses that have been determined to represent the highest risk based on their current environmental and economic impacts. The grasses were ranked in order of priority using the Biological Control Target Selection system. Five grasses were prioritised – Arundo donax L., Cortaderia jubata (Lem.) Stapf, Cortaderia selloana (Schult and Schult) Asch. and Graebn., Nassella trichotoma (Hack. ex Arech.), and Glyceria maxima (Hartm.) Holmb., based on attributes that make them suitable biocontrol targets. Arundo donax has already been the target of a biocontrol programme in South Africa. We reviewed the progress made towards the biocontrol of this species and discuss how this programme could be developed going forward. Moreover, we outline how biocontrol could be implemented to manage the remaining four high-priority targets. While biocontrol of grasses is not without its challenges (e.g. unresolved taxonomies, conflicts of interest and a lack of supporting legislation), South Africa has an opportunity to learn from existing global research and begin to invest in biocontrol of high-priority species that are in most need of control

    Field-based ecological studies to assess prospective biological control agents for invasive alien plants: An example from giant rat's tail grass

    Get PDF
    Biological control (biocontrol) of invasive alien plants is a widely utilised weed management tool. Prospective biocontrol agents are typically assessed through host specificity testing and pre-release efficacy studies performed in quarantine. However, rearing of the potential biocontrol agents and/or test plants is often difficult or impossible under quarantine conditions. Moreover, practitioners may attain laboratory artefacts in quarantine, which may result in the potential agent being needlessly rejected. Field-based studies in the weed's indigenous distribution could overcome these issues

    Phylogenetic analyses reveal multiple new stem-boring Tetramesa taxa (Hymenoptera: Eurytomidae): implications for the biological control of invasive African grasses

    Get PDF
    Many native South African grass species have become invasive elsewhere in the world. The application of biological control to invasive grasses has been approached with trepidation in the past, primarily due to concerns of a perceived lack of host specific herbivores. This has changed in recent times, and grasses are now considered suitable candidates. The Tetramesa Walker genus (Hymenoptera: Eurytomidae) has been found to contain species that are largely host specific to a particular grass species, or complex of closely related congeners. Very little taxonomic work exists for Tetramesa in the southern hemisphere, and the lack of morphological variability between many Tetramesa species has made identification difficult. This limits the ability to assess the genus for potential biological control agents. Species delimitation analyses indicated 16 putative novel southern African Tetramesa taxa. Ten of these were putative Tetramesa associated with Eragrostis curvula (Schrad.) Nees and Sporobolus pyramidalis Beauv. and S. natalensis Steud., which are alien invasive weeds in Australia. Of these ten Tetramesa taxa, eight were only found on a single host plant, while two taxa were associated with multiple species in a single grass genus. The Tetramesa spp. on S. pyramidalis and S. africanus were deemed suitably host-specific to be used as biological control agents. Field host range data for the Tetramesa species on E. curvula revealed that the wasp may not be suitably host specific for use as a biological control agent. However, further host specificity testing on non-target native Australian species is required

    Sample size assessments for thermal physiology studies: An R package and R Shiny application

    Get PDF
    Required sample sizes for a study need to be carefully assessed to account for logistics, cost, ethics and statistical rigour. For example, many studies have shown that methodological variations can impact the critical thermal limits (CTLs) recorded for a species, although studies on the impact of sample size on these measures are lacking. Here, we present ThermalSampleR; an R CRAN package and Shiny application that can assist researchers in determining when adequate sample sizes have been reached for their data. The method is particularly useful because it is not taxon specific. The Shiny application offers a user‐friendly interface equivalent to the package for users not familiar with R programming. ThermalSampleR is accompanied by an in‐built example dataset, which we use to guide the user through the workflow with a fully worked tutorial

    Sample size assessments for thermal physiology studies: An R package and R Shiny application

    Get PDF
    Required sample sizes for a study need to be carefully assessed to account for logistics, cost, ethics and statistical rigour. For example, many studies have shown that methodological variations can impact the critical thermal limits (CTLs) recorded for a species, although studies on the impact of sample size on these measures are lacking. Here, we present ThermalSampleR; an R CRAN package and Shiny application that can assist researchers in determining when adequate sample sizes have been reached for their data. The method is particularly useful because it is not taxon specific. The Shiny application offers a user‐friendly interface equivalent to the package for users not familiar with R programming. ThermalSampleR is accompanied by an in‐built example dataset, which we use to guide the user through the workflow with a fully worked tutorial.Funder: National Research Foundation; doi: http://dx.doi.org/10.13039/501100001321 Funder: South African Research Chairs Initiative of the Department of Science and Technology Funder: Working for Water (WfW) programme of the Department of Environmental Affairs: Natural Resource Management programme (DEA: NRM

    Biological control of South African plants that are invasive elsewhere in the world: A review of earlier and current programmes

    Get PDF
    South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa’s history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa

    Meson Cloud of the Nucleon in Polarized Semi-Inclusive Deep-Inelastic Scattering

    Get PDF
    We investigate the possibility of identifying an explicit pionic component of the nucleon through measurements of polarized Δ++\Delta^{++} baryon fragments produced in deep-inelastic leptoproduction off polarized protons, which may help to identify the physical mechanism responsible for the breaking of the Gottfried sum rule. The pion-exchange model predicts highly correlated polarizations of the Δ++\Delta^{++} and target proton, in marked contrast with the competing diquark fragmentation process. Measurement of asymmetries in polarized Λ\Lambda production may also reveal the presence of a kaon cloud in the nucleon.Comment: 23 pages REVTeX, 7 uuencoded figures, accepted for publication in Zeit. Phys.
    • 

    corecore