52 research outputs found
Statistical Mechanics of Horizontal Gene Transfer in Evolutionary Ecology
The biological world, especially its majority microbial component, is
strongly interacting and may be dominated by collective effects. In this
review, we provide a brief introduction for statistical physicists of the way
in which living cells communicate genetically through transferred genes, as
well as the ways in which they can reorganize their genomes in response to
environmental pressure. We discuss how genome evolution can be thought of as
related to the physical phenomenon of annealing, and describe the sense in
which genomes can be said to exhibit an analogue of information entropy. As a
direct application of these ideas, we analyze the variation with ocean depth of
transposons in marine microbial genomes, predicting trends that are consistent
with recent observations using metagenomic surveys.Comment: Accepted by Journal of Statistical Physic
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, OâMalley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. âMacrobeâ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes â the dominant life form on the planet, both now and throughout evolutionary history â will transform some of the philosophy of biologyâs standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology â including biofilm formation, chemotaxis, quorum sensing and gene transfer â that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Effects of patch connectivity and heterogeneity on metacommunity structure of planktonic bacteria and viruses
Dispersal limitation is generally considered to have little influence on the spatial structure of biodiversity in microbial metacommunities. This notion derives mainly from the analysis of spatial patterns in the field, but experimental tests of dispersal limitation using natural communities are rare for prokaryotes and, to our knowledge, non-existent for viruses. We studied the effects of dispersal intensity (three levels) and patch heterogeneity (two levels) on the structure of replicate experimental metacommunities of bacteria and viruses using outdoor mesocosms with plankton communities from natural ponds and lakes. Low levels of dispersal resulted in a decrease in the compositional differences (beta diversity) among the communities of both bacteria and viruses, but we found no effects of patch heterogeneity. The reductions in beta diversity are unlikely to be a result of mass effects and only partly explained by indirect dispersal-mediated interactions with phytoplankton and zooplankton. Our results suggest that even a very limited exchange among local communities can alter the trajectory of bacterial and viral communities at small temporal and spatial scales.
Marine viruses and global climate change
Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virusâhost interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of hostâvirus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans.
Genetic diversity of marine Synechococcus and co-occurring cyanophage communities : evidence for viral control of phytoplankton
Unicellular cyanobacteria of the genus Synechococcus are a major component of the picophytoplankton and make a substantial contribution to primary productivity in the oceans. Here we provide evidence that supports the hypothesis that virus infection can play an important role in determining the success of different Synechococcus genotypes and hence of seasonal succession. In a study of the oligotrophic Gulf of Aqaba, Red Sea, we show a succession of Synechococcus genotypes over an annual cycle. There were large changes in the genetic diversity of Synechococcus, as determined by restriction fragment length polymorphism analysis of a 403- bp rpoC1 gene fragment, which was reduced to one dominant genotype in July. The abundance of co-occurring cyanophage capable of infecting marine Synechococcus was determined by plaque assays and their genetic diversity was determined by denaturing gradient gel electrophoresis analysis of a 118-bp g20 gene fragment. The results indicate that both abundance and genetic diversity of cyanophage covaried with that of Synechococcus. Multivariate statistical analyses show a significant relationship between cyanophage assemblage structure and that of Synechococcus. These observations are consistent with cyanophage infection being a major controlling factor in picophytoplankton succession
- âŠ