16 research outputs found
A novel sensitive hexaplex high-resolution melt assay for identification of five human Plasmodium species plus internal control
Background: The diagnosis of malaria infection in humans remains challenging, further complicated by mixed Plasmodium species infections, potentially altering disease severity and morbidity. To facilitate appropriate control measures and treatment, rapid, sensitive, and specific detection assays, including those for the second minor species, would be required. This study aimed to develop a multiplex high-resolution melting (hexaplex PCR-HRM) assay with seven distinct peaks corresponding to five Plasmodium species of the Plasmodium genus, and an internal control to limit false negatives providing quality assurance testing results.
Methods: Five species-specific primers for human malaria species were designed targeting on the Plasmodium 18 small subunit ribosomal RNA (18S rRNA) and mitochondrial genes. The hexaplex PCR-HRM was developed for the simultaneous and rapid detection and differentiation of five human Plasmodium spp. The limit of detection (LoD), sensitivity, and specificity of the assay were evaluated. Artificial mixing was used to assess the ability to determine the second minor species. Furthermore, a hexaplex PCR-HRM assay was used to identify 120 Plasmodium-infected clinical isolates from Kanchanaburi, Western Thailand, where malaria is endemic.
Results: The hexaplex PCR-HRM assay detected the targeted genome of five Plasmodium species at levels as low as 2.354–3.316 copies/uL with 91.76 % sensitivity and 98.04 % specificity. In artificial mixing, the assay could detect minority parasite species at 0.001 % of the predominant parasite population. Plasmodium vivax infections (99 %) accounted for the majority of malaria cases in Kanchanaburi, Thailand.
Conclusions: The developed hexaplex PCR-HRM assay we present in this study is a novel approach for multiplexing the Plasmodium genus and detecting five Plasmodium species with the advantage of detecting second minority parasite species. The developed one-step assay without any nesting protocols would reduce the risks of cross-contamination. Moreover, it also provides a simple, sensitive, specific, and low-cost approach for optional molecular detection of malaria
Molecular surveillance for operationally relevant genetic polymorphisms in Plasmodium falciparum in Southern Chad, 2016–2017
Background: Resistance to anti-malarials is a serious threat to the efforts to control and eliminate malaria. Surveillance based on simple field protocols with centralized testing to detect molecular markers associated with anti-malarial drug resistance can be used to identify locations where further investigations are needed.
Methods: Dried blood spots were collected from 398 patients (age range 5–59 years, 99% male) with Plasmodium falciparum infections detected using rapid diagnostic tests over two rounds of sample collection conducted in 2016 and 2017 in Komé, South-West Chad. Specimens were genotyped using amplicon sequencing or qPCR for validated markers of anti-malarial resistance including partner drugs used in artemisinin-based combination therapy (ACT).
Results: No mutations in the pfk13 gene known to be associated with artemisinin resistance were found but a high proportion of parasites carried other mutations, specifically K189T (190/349, 54.4%, 95%CI 49.0–59.8%). Of 331 specimens successfully genotyped for pfmdr1 and pfcrt, 52% (95%CI 46.4–57.5%) carried the NFD-K haplotype, known to be associated with reduced susceptibility to lumefantrine. Only 20 of 336 (6.0%, 95%CI 3.7–9.0%) had parasites with the pfmdr1-N86Y polymorphism associated with increased treatment failures with amodiaquine. Nearly all parasites carried at least one mutation in pfdhfr and/or pfdhps genes but ‘sextuple’ mutations in pfdhfr—pfdhps including pfdhps -A581G were rare (8/336 overall, 2.4%, 95%CI 1.2–4.6%). Only one specimen containing parasites with pfmdr1 gene amplification was detected.
Conclusions: These results provide information on the likely high efficacy of artemisinin-based combinations commonly used in Chad, but suggest decreasing levels of sensitivity to lumefantrine and high levels of resistance to sulfadoxine-pyrimethamine used for seasonal malaria chemoprevention and intermittent preventive therapy in pregnancy. A majority of parasites had mutations in the pfk13 gene, none of which are known to be associated with artemisinin resistance. A therapeutic efficacy study needs to be conducted to confirm the efficacy of artemether-lumefantrine
Measurement of gene amplifications related to drug resistance in Plasmodium falciparum using droplet digital PCR
Background: Copy number variations (CNVs) of the Plasmodium falciparum multidrug resistance 1 (pfmdr1), P. falciparum plasmepsin2 (pfplasmepsin2) and P. falciparum GTP cyclohydrolase 1 (pfgch1) genes are associated with anti-malarial drug resistance in P. falciparum malaria. Droplet digital PCR (ddPCR) assays have been developed for accurate assessment of CNVs in several human genes. The aim of the present study was to develop and validate ddPCR assays for detection of the CNVs of P. falciparum genes associated with resistance to anti-malarial drugs. Methods: A multiplex ddPCR assay was developed to detect the CNVs in the pfmdr1 and pfplasmepsin2 genes, while a duplex ddPCR assay was developed to detect CNV in the pfgch1 gene. The gene copy number (GCN) quantification limit, as well as the accuracy and precision of the ddPCR assays were determined and compared to conventional quantitative PCR (qPCR). In order to reduce the cost of testing, a multiplex ddPCR assay of two target genes, pfmdr1 and pfplasmepsin2, was validated. In addition, the CNVs of genes of field samples collected from Thailand from 2015 to 2019 (n = 84) were assessed by ddPCR and results were compared to qPCR as the reference assay. Results: There were no significant differences between the GCN results obtained from uniplex and multiplex ddPCR assays for detection of CNVs in the pfmdr1 and pfplasmepsin2 genes (p = 0.363 and 0.330, respectively). Based on the obtained gene copy number quantification limit, the accuracy and percent relative standard deviation (%RSD) value of the multiplex ddPCR assay were 95% and 5%, respectively, for detection of the CNV of the pfmdr1 gene, and 91% and 5% for detection of the CNV of the pfplasmepsin2 gene. There was no significant difference in gene copy numbers assessed by uniplex or duplex ddPCR assays regarding CNV in the pfgch1 gene (p = 0.276). The accuracy and %RSD value of the duplex ddPCR assay were 95% and 4%, respectively, regarding pfgch1 GCN. In the P. falciparum field samples, pfmdr1 and pfplasmepsin2 GCNs were amplified in 15% and 27% of samples from Ubon Ratchathani, Thailand, while pfgch1 GCN was amplified in 50% of samples from Yala, Thailand. There was 100% agreement between the GCN results obtained from the ddPCR and qPCR assays (κ = 1.00). The results suggested that multiplex ddPCR assay is the optional assay for the accurate detection of gene copy number without requiring calibration standards, while the cost and required time are reduced. Based on the results of this study, criteria for GCN detection by ddPCR analysis were generated. Conclusions: The developed ddPCR assays are simple, accurate, precise and cost-effective tools for detection of the CNVs in the pfmdr1, pfplasmepsin2 and pfgch1 genes of P. falciparum. The ddPCR assay is a useful additional tool for the surveillance of anti-malarial drug resistance
An online mapping database of molecular markers of drug resistance in Plasmodium falciparum: the ACT Partner Drug Molecular Surveyor
Abstract Background Prior to this project, only a handful of online visualizations existed for exploring the published literature on molecular markers of antimalarial drug resistance, and none specifically for the markers associated with Plasmodium falciparum resistance to the partner drugs in artemisinin-based combination therapy (ACT). Molecular information is collected in studies with different designs, using a variety of molecular methodologies and data analysis strategies, making it difficult to compare across studies. The purpose of this project was to develop a free online tool, which visualizes the widely published data on molecular markers of antimalarial drug resistance, starting with the two genes pfcrt and pfmdr-1, associated with resistance to the three most common partner drugs; amodiaquine, lumefantrine and mefloquine. Methods A literature review was conducted, and a standardized method was used to extract data from publications, and critical decisions on visualization were made. A global geospatial database was developed of specific pfmdr1 and pfcrt single nucleotide polymorphisms and pfmdr1 copy number variation. An informatics framework was developed that allowed flexibility in development of the tool over time and efficient adaptation to different source data. Results The database discussed in this paper has pfmdr1 and pfcrt marker prevalence information, from 579 geographic sites in 76 different countries, including results from over 86,000 samples from 456 articles published January 2001–May 2017. The ACT Partner Drugs Molecular Surveyor was launched by the WorldWide Antimalarial Resistance Network (WWARN) in March 2015 and it has attracted over 3000 unique visitors since then. Presented here is a demonstration of how the Surveyor database can be explored to monitor local, temporal changes in the prevalence of molecular markers. Here publications up to May 2017 were included, however the online ACT partner drug Molecular Surveyor is continuously updated with new data and relevant markers. Conclusions The WWARN ACT Partner Drugs Molecular Surveyor summarizes data on resistance markers in the pfmdr1 and pfcrt genes. The database is fully accessible, providing users with a rich resource to explore and analyze, and thus utilize a centralized, standardized database for different purposes. This open-source software framework can be adapted to other data, as demonstrated by the subsequent launch of the Artemisinin Molecular Surveyor and the Vivax Surveyor
L'Air : revue mensuelle : organe de la Ligue nationale populaire de l'aviation
mars 19421942/03 (N516)-1942/03