14 research outputs found

    Effects of Esaxerenone on Diabetes-Induced Endothelial Dysfunction

    Get PDF
    Aims: Pharmacological blockade of mineralocorticoid receptors (MRs) is a potential therapeutic approach to reduce cardiovascular complications since MRs play a crucial role in cardiovascular regulation. Recent studies suggest that MR antagonists affect several extrarenal tissues, including vessel function. We investigated the effect of a novel nonsteroidal selective MR blocker, esaxerenone, on diabetes-induced vascular dysfunction. Methods: Diabetes was induced by a single dose of streptozotocin in 8-week-old male C57BL/6 mice. Esaxerenone (3 mg/kg/day) or a vehicle was administered by gavage to diabetic mice for 3 weeks. Metabolic parameters, plasma aldosterone levels, and parameters related to renal function were measured. Endothelium-dependent or -independent vascular responses of the aortic segments were analyzed with acetylcholine or sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro study. Results: Induction of diabetes elevated plasma aldosterone level (P<0.05) and impaired endothelium-dependent vascular relaxation (P<0.05). The administration of esaxerenone ameliorated the endothelial dysfunction (P<0.01) without the alteration of metabolic parameters, blood pressure, and renal function. Esaxerenone improved the eNOSSer1177 phosphorylation in the aorta obtained from diabetic mice (P<0.05) compared with that in the vehicle-treated group. Furthermore, a major MR agonist, aldosterone, decreased eNOSSer1177 phosphorylation and increased eNOSThr495 phosphorylation in HUVECs, which recovered with esaxerenone. Esaxerenone ameliorated the endothelium-dependent vascular relaxation caused by aldosterone in the aortic segments obtained from C57BL/6 mice (P<0.001). Conclusion: Esaxerenone attenuates the development of diabetes-induced endothelial dysfunction in mice. These results suggest that esaxerenone has potential vascular protective effects in individuals with diabetes

    OMI-VT stormに対するカテーテルアブレーション

    Get PDF
    A 68-year-old woman with VT storm and frequent appropriate ICD therapy was referred for catheter ablation. Her past history was notable for aortic valve replacement by mechanical valve due to infectious endocarditis 17 years prior to presentation and left ventricular apical old myocardial infarction with unknown onset. At 67 years old, She admitted to the prior hospital due to ventricular tachycardia with LBBB and superior axis at heart rate of 210 per minutes. Administration of amiodarone and magnesium sulfate was ineffective and cardioversion of 200J was successfully terminated the tachycardia. Intra-cardiac defibrillator was implanted and the administration of amiodarone and mexiletine was started. 5 months after, she admitted to the hospital due to the frequent appropriate shock against the same ventricular tachycardia. Administration of lidocaine, sotalol, pilsicainide, and magnesium sulfate could not control the tachycardia and she was referred to our hospital for catheter ablation. During the first session, ventricular tachycardia was easily induced and electroanatomical mapping was performed both during tachycardia and during sinus rhythm. Late diastolic potential preceding the onset of QRS wave by 45ms was detected at the infero-septal side of the apical aneurysm. 7.5s of the RF energy application at this site could terminate the tachycardia and thereafter no ventricular tachycardia was induced. But after dose-reduction or cessation of some anti-arrhythmic drugs, ventricular tachycardia was recurred and second session was performed. This time, no ventricular tachycardia was induced, then we performed isthmus transection and core isolation against the apical aneurysm. Thereafter no ventricular tachycardia was occurred in spite of dose-reduction or cessation of some anti-arrhythmic drugs

    Effect of Pemafibrate on Eicosanoids

    Get PDF
    Aims: Various pathological processes related to diabetes cause endothelial dysfunction. Eicosanoids derived from arachidonic acid (AA) have roles in vascular regulation. Fibrates have recently been shown to attenuate vascular complications in diabetics. Here we examined the effects of pemafibrate, a selective peroxisome proliferator-activated receptor α modulator, on plasma eicosanoid levels and endothelial function in diabetic mice. Methods: Diabetes was induced in 7-week-old male wild-type mice by a single injection of streptozotocin (150 mg/kg). Pemafibrate (0.3 mg/kg/day) was administered orally for 3 weeks. Untreated mice received vehicle. Circulating levels of eicosanoids and free fatty acids were measured using both gas and liquid chromatography-mass spectrometry. Endothelium-dependent and endothelium-independent vascular responses to acetylcholine and sodium nitroprusside, respectively, were analyzed. Results: Pemafibrate reduced both triglyceride and non-high-density lipoprotein-cholesterol levels (P<0.01), without affecting body weight. It also decreased circulating levels of AA (P<0.001), thromboxane B2 (P<0.001), prostaglandin E2, leukotriene B4 (P<0.05), and 5 hydroxyeicosatetraenoic acid (P<0.001), all of which were elevated by the induction of diabetes. In contrast, the plasma levels of 15-deoxy-Δ12,14-prostaglandin J2, which declined following diabetes induction, remained unaffected by pemafibrate treatment. In diabetic mice, pemafibrate decreased palmitic acid (PA) and stearic acid concentrations (P<0.05). Diabetes induction impaired endothelial function, whereas pemafibrate ameliorated it (P<0.001). The results of ex vivo experiments indicated that eicosanoids or PA impaired endothelial function. Conclusion: Pemafibrate diminished the levels of vasoconstrictive eicosanoids and free fatty acids accompanied by a reduction of triglyceride. These effects may be associated with the improvement of endothelial function by pemafibrate in diabetic mice

    Olive mill wastewater and hydroxytyrosol inhibits atherogenesis in apolipoprotein E-deficient mice

    No full text
    Background and Aims The Mediterranean diet, which is characterized by high consumption of olive oil, prevents cardiovascular disease. Meanwhile, olive mill wastewater (OMWW), which is obtained as a byproduct during olive oil production, contains various promising bioactive components such as water-soluble polyphenols. Hydroxytyrosol (HT), the major polyphenol in OMWW, has anti-oxidative and anti-inflammatory properties; however, the atheroprotective effects of OMWW and HT remain to be fully understood. Here, we investigated the effect of OMWW and HT on atherogenesis. Methods and Results Male 8-week-old apolipoprotein E-deficient mice were fed a western-type diet supplemented with OMWW (0.30%w/w) or HT (0.02%w/w) for 20 weeks. The control group was fed a non-supplemented diet. OMWW and HT attenuated the development of atherosclerosis in the aortic arch as determined by Sudan IV staining (P<0.01, respectively) without alteration of body weight, plasma lipid levels, and blood pressure. OMWW and HT also decreased the production of oxidative stress (P<0.01, respectively) and the expression of NADPH oxidase subunits (e.g., NOX2 and p22phox) and inflammatory molecules (e.g., IL-1β and MCP-1) in the aorta. The results of in vitro experiments demonstrated that HT inhibited the expression of these molecules that were stimulated with LPS in RAW264.7 cells, murine macrophage-like cells. Conclusion OMWW and HT similarly attenuated atherogenesis. HT is a major component of water-soluble polyphenols in OMWW, and it inhibited inflammatory activation of macrophages. Therefore, our results suggest that the atheroprotective effects of OMWW are at least partially attributable to the anti-inflammatory effects of HT

    A Selective Mineralocorticoid Receptor Blocker, Esaxerenone, Attenuates Vascular Dysfunction in Diabetic C57BL/6 Mice

    No full text
    Aims: Pharmacological blockade of mineralocorticoid receptors (MRs) is a potential therapeutic approach to reduce cardiovascular complications since MRs play a crucial role in cardiovascular regulation. Recent studies suggest that MR antagonists affect several extrarenal tissues, including vessel function. We investigated the effect of a novel nonsteroidal selective MR blocker, esaxerenone, on diabetes-induced vascular dysfunction. Methods: Diabetes was induced by a single dose of streptozotocin in 8-week-old male C57BL/6 mice. Esaxerenone (3 mg/kg/day) or a vehicle was administered by gavage to diabetic mice for 3 weeks. Metabolic parameters, plasma aldosterone levels, and parameters related to renal function were measured. Endothelium-dependent or -independent vascular responses of the aortic segments were analyzed with acetylcholine or sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro study. Results: Induction of diabetes elevated plasma aldosterone level (P<0.05) and impaired endothelium-dependent vascular relaxation (P<0.05). The administration of esaxerenone ameliorated the endothelial dysfunction (P<0.01) without the alteration of metabolic parameters, blood pressure, and renal function. Esaxerenone improved the eNOSSer1177 phosphorylation in the aorta obtained from diabetic mice (P<0.05) compared with that in the vehicle-treated group. Furthermore, a major MR agonist, aldosterone, decreased eNOSSer1177 phosphorylation and increased eNOSThr495 phosphorylation in HUVECs, which recovered with esaxerenone. Esaxerenone ameliorated the endothelium-dependent vascular relaxation caused by aldosterone in the aortic segments obtained from C57BL/6 mice (P<0.001). Conclusion: Esaxerenone attenuates the development of diabetes-induced endothelial dysfunction in mice. These results suggest that esaxerenone has potential vascular protective effects in individuals with diabetes

    Impact of overweight on left ventricular function in type 2 diabetes mellitus

    Get PDF
    Abstract Background Coexistence of left ventricular (LV) longitudinal myocardial systolic dysfunction with LV diastolic dysfunction could lead to heart failure with preserved ejection fraction (HFpEF). Diabetes mellitus (DM) is known as a significant factor associated with HFpEF. Although the mechanisms of DM-related LV myocardial injury are complex, it has been postulated that overweight contributes to the development of LV myocardial injury in type 2 diabetes mellitus (T2DM) patients. However, the precise impact of overweight on LV longitudinal myocardial systolic function in T2DM patients remains unclear. Methods We studied 145 asymptomatic T2DM patients with preserved LV ejection fraction (LVEF) without coronary artery disease. LV longitudinal myocardial systolic function was assessed by global longitudinal strain (GLS), which was defined as the average peak strain of 18-segments obtained from standard apical views. Overweight was defined as body mass index (BMI) ≥ 25 kg/m2. Ninety age-, gender- and LVEF-matched healthy volunteers served as controls. Results GLS of overweight T2DM patients was significantly lower than that of non-overweight patients (17.9 ± 2.4% vs. 18.9 ± 2.6%, p < 0.05), whereas GLS of both overweight and non-overweight controls was similar (19.8 ± 1.3% vs. 20.4 ± 2.1%, p = 0.38). Furthermore, multiple regression analysis revealed that for T2DM patients, BMI was the independent determinant parameters for GLS as well as LV mass index. Conclusions Overweight has a greater effect on LV longitudinal myocardial systolic function in T2DM patients than on that in non-DM healthy subjects. Our finding further suggests that the strict control of overweight in T2DM patients may be associated with prevention of the development of HFpEF
    corecore