31 research outputs found

    Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model

    Get PDF
    The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed

    Requirements and Development of an Acceleration Measurement System for International Space Station Microgravity Science Payloads

    Get PDF
    The International Space Station is being developed by NASA and international partners as a versatile user platform to allow long term on-orbit investigations of a variety of scientific and technology arenas. In particular, scientific studies are planned within a research class known as microgravity science in areas such as biotechnology, combustion, fluid physics, and materials sciences. An acceleration measurement system is in development to aid such research conducted in the on-orbit conditions of apparent weightlessness. This system provides a general purpose acceleration measurement capability in support of these payloads and investigators. Such capability allows for systematic study of scientific phenomena by obtaining information regarding the local accelerations present during experiment operations. Preparations for implementing this flight measurement system involves two distinct stages: requirements development prior to initiating the design activity, and the design activity itself. This paper defines the requirements definition approach taken, provides an overview of the results of the requirements phase, and outlines the initial design considerations being addressed for this measurement system. Some preliminary engineering approaches are also described

    Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    Get PDF
    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users

    An Acceleration Measurement Capability on International Space Station Supporting Microgravity Science Payloads

    Get PDF
    The conditions present in low-earth-orbit have enabled various scientific investigations to be conducted. A fundamental reason that space is a useful environment for science is the presence of a decreased effect of gravity while in orbital free-fall. Science investigations are conducted to study phenomena occurring as a result of reductions in buoyancy forces and phenomena enabled as a result of the apparent lack of gravity. The science community requires knowledge of the environment in which their experiments are being conducted. A general purpose measurement system was developed in the 1980's to supply scientific investigators with data of the residual acceleration environment. The Space Acceleration Measurement System, or SAMS, has flown aboard the NASA shuttle fleet over fourteen times, successfully acquiring acceleration measurement data in support of microgravity science experiments. As NASA continues its development of the International Space Station and its associated research payloads, it once again becomes necessary to address the requirement to measure the residual acceleration in support of the planned scientific investigations. As a follow-on to the SAMS project, SAMS-2 was initiated to investigate the requirements and develop the measurement system to support the microgravity science payloads aboard the International Space Station. The characteristics of the payload complement to be supported by SAMS-2 and the different capabilities provided by the station requires a fresh look at the design implementation of a general purpose measurement system. Not only is there a requirement for measurements in support of numerous, potentially simultaneous experiments, but this support is required to be provided for at least ten years of on-orbit operation as compared to a ten to fourteen day mission on shuttle. These differences in fundamental requirements result in the design configuration of the space station-based SAMS-2 being significantly different than that of the shuttle-based SAMS. This paper describes these differences in requirements and the planned features to be provided to the science user community. Some of the unique challenges faced in developing a general purpose measurement system are also discussed

    NASA Radioisotope Power System Program - Technology and Flight Systems

    Get PDF
    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided

    Radioisotope Power: A Key Technology for Deep Space Explorations

    Get PDF
    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future

    Radioisotope Power Systems Program Status and Expectations

    Get PDF
    The Radioisotope Power Systems (RPS) Programs goal is to make RPS available for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to use to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The RPS Program exists to support NASA's Science Mission Directorate (SMD). The RPS Program provides strategic leadership for RPS, enables the availability of RPS for use by the planetary science community, successfully executes RPS flight projects and mission deployments, maintains a robust technology development portfolio, manages RPS related National Environmental Policy Act (NEPA) and Nuclear Launch Safety (NLS) approval processes for SMD, maintains insight into the Department of Energy (DOE) implementation of NASA funded RPS production infrastructure operations, including implementation of the NASA funded Plutonium-238 production restart efforts. This paper will provide a status of recent RPS activities

    NASA's Radioisotope Power Systems - Plans

    Get PDF
    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements

    NASA's Radioisotope Power Systems Program Status

    Get PDF
    NASA's Radioisotope Power Systems (RPS) Program began formal implementation in December 2010. The RPS Program's goal is to make available RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The current keystone of the RPS Program is the development of the Advanced Stirling Radioisotope Generator (ASRG). This generator will be about four times more efficient than the more traditional thermoelectric generators, while providing a similar amount of power. This paper provides the status of the RPS Program and its related projects. Opportunities for RPS generator development and targeted research into RPS component performance enhancements, as well as constraints dealing with the supply of radioisotope fuel, are also discussed in the context of the next ten years of planetary science mission plans
    corecore