9 research outputs found
Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars
The In-Situ production of propellants for Martian and Lunar missions has been heavily discussed since the mid 1990's. One portion of the production of the propellants is the liquefaction, storage, and delivery of the propellants to the stage tanks. Two key technology development efforts are required: large refrigeration systems (cryocoolers) to perform the liquefaction and high performance insulation within a soft vacuum environment. Several different concepts of operation may be employed to liquefy the propellants based on how and where these two technologies are implemented. The concepts that were investigated include: using an accumulator tank to store the propellant until it is needed, liquefying in the flow stream going into the tank, and liquefying in the flight propellant tank itself. The different concept of operations were studied to assess the mass and power impacts of each concept. Additionally, the trade between insulation performance and cryocooler mass was performed to give performance targets for soft vacuum insulation development. It was found that liquefying within the flight propellant tank itself adds the least mass and power requirements to the mission
Cryogenic Fluid Management Technology for Moon and Mars Missions
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars
Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars
ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems
Methane Lunar Surface Thermal Control Test
NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages
Investigation into Cryogenic Tank Insulation Systems for the Mars Surface Environment
In order to use oxygen that is produced on the surface of Mars from In-Situ production processes in a chemical propulsion system, the oxygen must first be converted from vapor phase to liquid phase and then stored within the propellant tanks of the propulsion system. The oxygen must then be stored in the liquid phase for several years between when the liquefaction operations are initiated and when the ascent stage lifts off the Martian surface. Since the Space Exploration Initiative, NASA has been investing small sums of money into soft vacuum systems for Mars Applications. A study was done into these various insulation systems for soft vacuum insulation, to determine what types of systems might be best to further pursue. Five different architectures or cycles were considered: Aerogel-based multilayer Insulation (MLAI), Space Evacuated Mars Vacuum Jacket (SEMOV) (also known as lightweight vacuum jacket), Load Responsive-Multilayer Insulation, Spray on Foam with MLI, and MLAI in SEMOV. Models of each architecture were developed to give insight into the performance and losses of each of the options. The results were then compared across six categories: Insulation System Mass, Active System Power (both input and heat rejection), Insulation System Cost, Manufacturability, Reliability, and Operational Flexibility. The result was that a trade between reliability and mass was clearly identified. Systems with high mass, also had high perceived reliability; whereas, systems with lower mass and power had a much lower perceived reliability. In the end, the numerical trades of these systems showed nominally identical rankings. As a result it is recommended that NASA focus its Martian insulation development activities on demonstrating and improving the reliability of the lightweight identified systems
Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology
Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate the exploration of how site-specific O-glycosylation regulates protein function
Lynx Mission Concept Status
Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper
Recommended from our members
Lynx Mission concept status
Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper.NASA HeadquartersThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]