6 research outputs found

    Pramipexole effects on startle gating in rats and normal men

    Get PDF
    Dopamine D3 receptors regulate sensorimotor gating in rats, as evidenced by changes in prepulse inhibition (PPI) of startle after acute administration of D3 agonists and antagonists. In this study, we tested the effects of the D3-preferential agonist, pramipexole, on PPI in normal men and Sprague–Dawley rats. Acoustic startle and PPI were tested in clinically normal men, comparing the effects of placebo vs. 0.125 mg (n = 20) or placebo vs. 0.1875 mg (n = 20) pramipexole, in double blind, crossover designs. These measures were also tested in male Sprague–Dawley rats using a parallel design [vehicle vs. 0.1 mg/kg (n = 8), vehicle vs. 0.3 mg/kg (n = 8) or vehicle vs. 1.0 mg/kg pramipexole (n = 8)]. Autonomic and subjective measures of pramipexole effects and several personality instruments were also measured in humans. Pramipexole increased drowsiness and significantly increased PPI at 120-ms intervals in humans; the latter effect was not moderated by baseline PPI or personality scale scores. In rats, pramipexole causes a dose-dependent reduction in long-interval (120 ms) PPI, while low doses actually increased short-interval (10–20 ms) PPI. Effects of pramipexole on PPI in rats were independent of baseline PPI and changes in startle magnitude. The preferential D3 agonist pramipexole modifies PPI in humans and rats. Unlike indirect DA agonists and mixed D2/D3 agonists, pramipexole increases long-interval PPI in humans, in a manner that is independent of baseline PPI and personality measures. These findings are consistent with preclinical evidence for differences in the D2- and D3-mediated regulation of sensorimotor gating

    Modular Chimeric Antigen Receptor Systems for Universal CAR T Cell Retargeting

    No full text
    The engineering of T cells through expression of chimeric antigen receptors (CARs) against tumor-associated antigens (TAAs) has shown significant potential for use as an anti-cancer therapeutic. The development of strategies for flexible and modular CAR T systems is accelerating, allowing for multiple antigen targeting, precise programming, and adaptable solutions in the field of cellular immunotherapy. Moving beyond the fixed antigen specificity of traditional CAR T systems, the modular CAR T technology splits the T cell signaling domains and the targeting elements through use of a switch molecule. The activity of CAR T cells depends on the presence of the switch, offering dose-titratable response and precise control over CAR T cells. In this review, we summarize developments in universal or modular CAR T strategies that expand on current CAR T systems and open the door for more customizable T cell activity

    Sensory Gating Scales and Premonitory Urges in Tourette Syndrome

    Get PDF
    Sensory and sensorimotor gating deficits characterize both Tourette syndrome (TS) and schizophrenia. Premonitory urges (PU) in TS can be assessed with the University of Sao Paulo Sensory Phenomena Scale (USP-SPS) and the Premonitory Urge for Tics Scale (PUTS). In 40 subjects (TS: n = 18; healthy comparison subjects [HCS]: n = 22), we examined the relationship between PU scores and measures of sensory gating using the USP-SPS, PUTS, Sensory Gating Inventory (SGI), and Structured Interview for Assessing Perceptual Anomalies (SIAPA), as well symptom severity scales. SGI, but not SIAPA, scores were elevated in TS subjects (p < 0.0003). In TS subjects, USP-SPS and PUTS scores correlated significantly with each other, but not with the SGI or SIAPA; neither PU nor sensory gating scales correlated significantly with symptom severity. TS subjects endorse difficulties in sensory gating and the SGI may be valuable for studying these clinical phenomena.US National Institute of Mental Health (NIMH/NIH)[MH59803

    Amphetamine effects on startle gating in normal women and female rats

    Get PDF
    Dopamine agonists disrupt prepulse inhibition (PPI) of startle in male rodents. In humans, this is observed only in some studies. We reported that PPI was disrupted by d-amphetamine in men, but only among those with high basal PPI levels. Here, amphetamine effects on PPI were tested in normal women and female rats. Acoustic startle and PPI were tested in normal women after placebo or 20 mg amphetamine, in a double-blind, crossover design, and in female rats after vehicle or 4.5 mg/kg amphetamine. Rats were from Sprague–Dawley (SD) and Long Evans (LE) strains that differ significantly in gene expression in PPI-regulatory circuitry, including levels of nucleus accumbens (NAC) catechol-O-methyl transferase (COMT) mRNA. Amphetamine was bioactive in humans based on quantitative autonomic and self-rating measures, but did not significantly change startle magnitude or PPI across all subjects. Amphetamine’s effects on PPI in women correlated significantly (p &lt; 0.0008) with placebo PPI levels (reducing PPI only in women whose basal PPI levels exceeded the sample median) and with measures of novelty and sensation seeking. Amphetamine decreased PPI in SD rats that have relatively low NAC COMT gene expression and increased PPI in LE rats that have relatively high NAC COMT gene expression. The dopaminergic regulation of PPI in humans is related to basal levels of sensorimotor gating and to specific personality traits in normal men and women. In rats, the effects of amphetamine on PPI differ significantly in strains with low vs. high NAC COMT expression

    Cardiovascular Activity

    No full text
    corecore