6,578 research outputs found

    Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid

    Full text link
    We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature

    Scattering of hole excitations in a one-dimensional spinless quantum liquid

    Full text link
    Luttinger liquid theory accounts for the low energy boson excitations of one-dimensional quantum liquids, but disregards the high energy excitations. The most important high energy excitations are holes which have infinite lifetime at zero temperature. At finite temperatures they can be scattered by thermally excited bosons. We describe the interaction of the hole with the bosons by treating it as a mobile impurity in a Luttinger liquid. This approach enables us to evaluate the scattering probability at arbitrary interaction strength. In general, the result is expressed in terms of the hole spectrum, its dependence on the density and momentum of the fluid, and the parameters of the Luttinger liquid Hamiltonian. In the special case of Galilean invariant systems the scattering probability is expressed in terms of only the hole spectrum and its dependence on the fluid density. We apply our results to the problem of equilibration of one-dimensional quantum liquids

    Some Properties of the Calogero-Sutherland Model with Reflections

    Full text link
    We prove that the Calogero-Sutherland Model with reflections (the BC_N model) possesses a property of duality relating the eigenfunctions of two Hamiltonians with different coupling constants. We obtain a generating function for their polynomial eigenfunctions, the generalized Jacobi polynomials. The symmetry of the wave-functions for certain particular cases (associated to the root systems of the classical Lie groups B_N, C_N and D_N) is also discussed.Comment: 16 pages, harvmac.te

    Long Range Interaction Models and Yangian Symmetry

    Full text link
    The generalized Sutherland-Romer models and Yan models with internal spin degrees are formulated in terms of the Polychronakos' approach and RTT relation associated to the Yang-Baxter equation in consistent way. The Yangian symmetry is shown to generate both models. We finally introduce the reflection algebra K(u) to the long range models.Comment: 13 pages, preprint of Nankai Institute of Mathematics ( Theoretical Physics Division ), published in Physical Review E of 1995. For hard copy, write to Prof. Mo-lin GE directly. Do not send emails to this accoun

    Fermi Surface Reconstruction in CeRh1x_{1-x}Cox_{x}In5_{5}

    Full text link
    The evolution of the Fermi surface of CeRh1x_{1-x}Cox_xIn5_5 was studied as a function of Co concentration xx via measurements of the de Haas-van Alphen effect. By measuring the angular dependence of quantum oscillation frequencies, we identify a Fermi surface sheet with ff-electron character which undergoes an abrupt change in topology as xx is varied. Surprisingly, this reconstruction does not occur at the quantum critical concentration xcx_c, where antiferromagnetism is suppressed to T=0. Instead we establish that this sudden change occurs well below xcx_c, at the concentration x ~ 0.4 where long range magnetic order alters its character and superconductivity appears. Across all concentrations, the cyclotron effective mass of this sheet does not diverge, suggesting that critical behavior is not exhibited equally on all parts of the Fermi surface.Comment: 4 pages, 4 figure

    Taxonomy of particles in Ising spin chains

    Get PDF
    The statistical mechanics of particles with shapes on a one-dimensional lattice is investigated in the context of the s=1s=1 Ising chain with uniform nearest-neighbor coupling, quadratic single-site potential, and magnetic field, which supports four distinct ground states: ...>|\uparrow\downarrow\uparrow\downarrow...>, ...>|\circ\circ...>, ...>|\uparrow\uparrow...>, ...>|\uparrow\circ\uparrow\circ...>. The complete spectrum is generated from each ground state by particles from a different set of six or seven species. Particles and elements of pseudo-vacuum are characterized by motifs (patterns of several consecutive site variables). Particles are floating objects that can be placed into open slots on the lattice. Open slots are recognized as permissible links between motifs. The energy of a particle varies between species but is independent of where it is placed. Placement of one particle changes the open-slot configuration for particles of all species. This statistical interaction is encoded in a generalized Pauli principle, from which the multiplicity of states for a given particle combination is determined and used for the exact statistical mechanical analysis. Particles from all species belong to one of four categories: compacts, hosts, tags, or hybrids. Compacts and hosts find open slots in segments of pseudo-vacuum. Tags find open slots inside hosts. Hybrids are tags with hosting capability. In the taxonomy of particles proposed here, `species' is indicative of structure and `category' indicative of function. The hosting function splits the Pauli principle into exclusion and accommodation parts. Near phase boundaries, the state of the Ising chain at low temperature is akin to that of miscible or immiscible liquids with particles from one species acting as surfactant molecules.Comment: 12 pages, 6 tables, 6 figure

    Discovery of Extreme Examples of Superclustering in Aquarius

    Get PDF
    We report the discovery of two highly extended filaments and one extremely high density knot within the region of Aquarius. The supercluster candidates were chosen via percolation analysis of the Abell and ACO catalogs and include only the richest clusters (R >= 1). The region examined is a 10x45 degree strip and is now 87% complete in cluster redshift measurements to mag_10 = 18.3. In all, we report 737 galaxy redshifts in 46 cluster fields. One of the superclusters, dubbed Aquarius, is comprised of 14 Abell/ACO clusters and extends 110h^-1Mpc in length only 7 degrees off the line-of-sight. On the near-end of the Aquarius filament, another supercluster, dubbed Aquarius-Cetus, extends for 75h^-1Mpc perpendicular to the line-of-sight. After fitting ellipsoids to both Aquarius and Aquarius-Cetus, we find axis ratios (long-to- midlength axis) of 4.3 for Aquarius and 3.0 for Aquarius-Cetus. We fit ellipsoids to all N>=5 clumps of clusters in the Abell/ACO measured-z cluster sample. The frequency of filaments with axis ratios >=3.0 (~20%) is nearly identical with that found among `superclusters' in Monte Carlo simulations of random and random- clumped clusters, however, so the rich Abell/ACO clusters have no particular tendency toward filamentation. The Aquarius filament also contains a `knot' of 6 clusters at Z ~0.11, with five of the clusters near enough togeteher to represent an apparent overdensity of 150. There are three other R >= 1 cluster density enhancements similar to this knot at lower redshifts: Corona Borealis, the Shapely Concentration, and another grouping of seven clusters in Microscopium. All four of these dense superclusters appear near the point of breaking away from the Hubble Flow, and some may now be in collapse, but there is little evidence of any being virialized.Comment: 45 pages (+ e-tables), 7 figures, AASTeX Accepted for Publication in Ap

    Coherently Controlled Nanoscale Molecular Deposition

    Full text link
    Quantum interference effects are shown to provide a means of controlling and enhancing the focusing a collimated neutral molecular beam onto a surface. The nature of the aperiodic pattern formed can be altered by varying laser field characteristics and the system geometry.Comment: 13 pages (inculding 4 figures), LaTeX (Phys. Rev. Lett., 2000, in Press

    Exact Solution of Heisenberg-liquid models with long-range coupling

    Full text link
    We present the exact solution of two Heisenberg-liquid models of particles with arbitrary spin SS interacting via a hyperbolic long-range potential. In one model the spin-spin coupling has the simple antiferromagnetic Heisenberg exchange form, while for the other model the interaction is of the ferromagnetic Babujian-Takhatajan type. It is found that the Bethe ansatz equations of these models have a similar structure to that of the Babujian-Takhatajan spin chain. We also conjecture the integrability of a third new spin-lattice model with long-range interaction.Comment: 7pages Revte
    corecore