58 research outputs found

    Novel Mouse Mammary Cell Lines for \u3cem\u3ein vivo\u3c/em\u3e Bioluminescence Imaging (BLI) of Bone Metastasis

    Get PDF
    Background Tumor cell lines that can be tracked in vivo during tumorigenesis and metastasis provide vital tools for studying the specific cellular mechanisms that mediate these processes as well as investigating therapeutic targets to inhibit them. The goal of this study was to engineer imageable mouse mammary tumor cell lines with discrete propensities to metastasize to bone in vivo. Two novel luciferase expressing cell lines were developed and characterized for use in the study of breast cancer metastasis to bone in a syngeneic mouse model. Results The 4T1.2 luc3 and 66c14 luc2 cell lines were shown to have high levels of bioluminescence intensity in vitro and in vivo after orthotopic injection into mouse mammary fat pads. The 4T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone. Specifically, 4T1.2 luc3 cells demonstrated a high incidence of metastasis to spine, with an ex-vivo BLI intensity three orders of magnitude above the commercially available 4T1 luc2 cells. 66c14 luc2 cells also demonstrated metastasis to spine, which was lower than that of 4T1.2 luc3 cells but higher than 4T1 luc2 cells, in addition to previously unreported metastases in the liver. High osteolytic activity of the 4T1.2 luc3 cells in vivo in the bone microenvironment was also detected. Conclusions The engineered 4T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone

    Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology.

    Get PDF
    Protective immunity to Mycobacterium tuberculosis (Mtb)-the causative agent of tuberculosis (TB)-is not fully understood but involves immune responses within the pulmonary airways which can lead to exacerbated inflammation and immune pathology. In humans, this inflammation results in lung damage; the extent of which depends on specific host pro-inflammatory processes. Neutrophils, though increasingly linked to the development of inflammatory disorders, have been less well studied in relation to TB-induced lung pathology. Neutrophils mode of action and their specialized functions can be directly linked to TB-specific lung tissue damage observed on patient chest X-rays at diagnosis and contribute to long-term pulmonary sequelae. This review discusses aspects of neutrophil activity associated with active TB, including the resulting inflammation and pulmonary impairment. It highlights the significance of neutrophil function on TB disease outcome and underlines the necessity of monitoring neutrophil function for better assessment of the immune response and severity of lung pathology associated with TB. Finally, we propose that some MMPs, ROS, MPO, S100A8/A9 and Glutathione are neutrophil-related inflammatory mediators with promising potential as targets for developing host-directed therapies for TB

    Oncostatin M Promotes Mammary Tumor Metastasis to Bone and Osteolytic Bone Degradation

    Get PDF
    Oncostatin M (OSM) is an interleukin-6 (IL-6) family cytokine that has been implicated in a number of biological processes including inflammation, hematopoiesis, immune responses, development, and bone homeostasis. Recent evidence suggests that OSM may promote breast tumor invasion and metastasis. We investigated the role of OSM in the formation of bone metastases in vivo using the 4T1.2 mouse mammary tumor model in which OSM expression was knocked down using shRNA (4T1.2-OSM). 4T1.2-OSM cells were injected orthotopically into Balb/c mice, resulting in a greater than 97% decrease in spontaneous metastasis to bone compared to control cells. Intratibial injection of these same 4T1.2-OSM cells also dramatically reduced the osteolytic destruction of trabecular bone volume compared to control cells. Furthermore, in a tumor resection model, mice bearing 4T1.2-OSM tumors showed an increase in survival by a median of 10 days. To investigate the specific cellular mechanisms important for OSM-induced osteolytic metastasis to bone, an in vitro model was developed using the RAW 264.7 preosteoclast cell line co-cultured with 4T1.2 mouse mammary tumor cells. Treatment of co-cultures with OSM resulted in a 3-fold induction of osteoclastogenesis using the TRAP assay. We identified several tumor cell–induced factors including vascular endothelial growth factor, IL-6, and a previously uncharacterized OSM-regulated bone metastasis factor, amphiregulin (AREG), which increased osteoclast differentiation by 4.5-fold. In addition, pretreatment of co-cultures with an anti-AREG neutralizing antibody completely reversed OSM-induced osteoclastogenesis. Our results suggest that one mechanism for OSM-induced osteoclast differentiation is via an AREG autocrine loop, resulting in decreased osteoprotegerin secretion by the 4T1.2 cells. These data provide evidence that OSM might be an important therapeutic target for the prevention of breast cancer metastasis to bone

    Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI) of bone metastasis

    Get PDF
    Abstract Background Tumor cell lines that can be tracked in vivo during tumorigenesis and metastasis provide vital tools for studying the specific cellular mechanisms that mediate these processes as well as investigating therapeutic targets to inhibit them. The goal of this study was to engineer imageable mouse mammary tumor cell lines with discrete propensities to metastasize to bone in vivo. Two novel luciferase expressing cell lines were developed and characterized for use in the study of breast cancer metastasis to bone in a syngeneic mouse model. Results The 4 T1.2 luc3 and 66c14 luc2 cell lines were shown to have high levels of bioluminescence intensity in vitro and in vivo after orthotopic injection into mouse mammary fat pads. The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone. Specifically, 4 T1.2 luc3 cells demonstrated a high incidence of metastasis to spine, with an ex-vivo BLI intensity three orders of magnitude above the commercially available 4 T1 luc2 cells. 66c14 luc2 cells also demonstrated metastasis to spine, which was lower than that of 4 T1.2 luc3 cells but higher than 4 T1 luc2 cells, in addition to previously unreported metastases in the liver. High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected. Conclusions The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone.</p

    The WARPS Survey: VI. Galaxy Cluster and Source Identifications from Phase I

    Get PDF
    We present in catalog form the optical identifications for objects from the first phase of the Wide Angle ROSAT Pointed Survey (WARPS). WARPS is a serendipitous survey of relatively deep, pointed ROSAT observations for clusters of galaxies. The X-ray source detection algorithm used by WARPS is Voronoi Tessellation and Percolation (VTP), a technique which is equally sensitive to point sources and extended sources of low surface brightness. WARPS-I is based on the central regions of 86 ROSAT PSPC fields, covering an area of 16.2 square degrees. We describe here the X-ray source screening and optical identification process for WARPS-I, which yielded 34 clusters at 0.06<z<0.75. Twenty-two of these clusters form a complete, statistically well defined sample drawn from 75 of these 86 fields, covering an area of 14.1 square degrees, with a flux limit of F (0.5-2.0 keV) = 6.5 \times 10^{-14} erg cm^{-2} s^{-1}}. This sample can be used to study the properties and evolution of the gas, galaxy and dark matter content of clusters, and to constrain cosmological parameters. We compare in detail the identification process and findings of WARPS to those from other recently published X-ray surveys for clusters, including RDCS, SHARC-Bright, SHARC-south and the CfA 160 deg2^2 survey.Comment: v3 reflects minor updates to tables 2 and

    Five new real-time detections of Fast Radio Bursts with UTMOST

    Get PDF
    We detail a new fast radio burst (FRB) survey with the Molonglo Radio Telescope, in which six FRBs were detected between June 2017 and December 2018. By using a real-time FRB detection system, we captured raw voltages for five of the six events, which allowed for coherent dedispersion and very high time resolution (10.24 μ\mus) studies of the bursts. Five of the FRBs show temporal broadening consistent with interstellar and/or intergalactic scattering, with scattering timescales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows remarkable temporal structure, with 3 peaks each separated by 1 ms. We searched for phase-coherence between the leading and trailing peaks and found none, ruling out lensing scenarios. Based on this survey, we calculate an all-sky rate at 843 MHz of 9839+5998^{+59}_{-39} events sky1^{-1} day1^{-1} to a fluence limit of 8 Jy-ms: a factor of 7 below the rates estimated from the Parkes and ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index α=1.6\alpha=-1.6 (FνναF_{\nu}\propto\nu^{\alpha}). Our results suggest that FRB spectra may turn over below 1 GHz. Optical, radio and X-ray followup has been made for most of the reported bursts, with no associated transients found. No repeat bursts were found in the survey.Comment: 13 pages, 11 figures, submitted to MNRA

    Funerary Artifacts, Social Status, and Atherosclerosis in Ancient Peruvian Mummy Bundles

    Get PDF
    Background: Evidence of atherosclerotic plaques in ancient populations has led to the reconsideration of risk factors for heart disease and of the common belief that it is a disease of modern times. Methods: Fifty-one wrapped mummy bundles excavated from the sites of Huallamarca, Pedreros, and Rinconada La Molina from the Puruchuco Museum collection in Lima, Peru, were scanned using computed tomography to investigate the presence of atherosclerosis. Funerary artifacts contained within the undisturbed mummy bundles were analyzed as an attempt to infer the social status of the individuals to correlate social status with evidence of heart disease in this ancient Peruvian group. This work also provides an inventory of the museum mummy collection to guide and facilitate future research. Results: Statistical analysis concluded that there is little association between the types of grave goods contained within the bundles when the groups are pooled together. However, some patterns of artifact type, material, atherosclerosis, and sex emerge when the 3 excavation sites are analyzed separately. Conclusions: From the current sample, it would seem that social class is difficult to discern, but those from Huallamarca have the most markers of elite status. We had hypothesized that higher-status individuals may have had lifestyles that would place them at a higher risk for atherogenesis. There seems to be some indication of this within the site of Huallamarca, but it is inconclusive in the other 2 archeological sites. It is possible that a larger sample size in the future could reveal more statistically significant results

    Neutrophils Contribute to Severity of Tuberculosis Pathology and Recovery From Lung Damage Pre- and Posttreatment.

    Get PDF
    BACKGROUND: Despite microbiological cure, about 50% of tuberculosis (TB) patients have poor lung recovery. Neutrophils are associated with lung pathology; however, CD16/CD62L-defined subsets have not been studied in TB. Using flow cytometry, we monitored frequencies, phenotype, and function of neutrophils following stimulation with Mycobacterium tuberculosis (Mtb) whole cell lysate (WCL) and ESAT-6/CFP-10 fusion protein (EC) in relation to lung pathology. METHODS: Fresh blood from 42 adult, human immunodeficiency virus (HIV)-negative TB patients were analyzed pre- and post-therapy, with disease severity determined using chest radiography and bacterial load. Flow cytometry was used to monitor frequencies, phenotype, and function (generation of reactive oxygen species [ROS], together with CD11b, tumor necrosis factor, and interleukin 10 [IL-10] expression) of neutrophils following 2-hour stimulation with Mtb-specific antigens. RESULTS: Total neutrophils decreased by post-treatment compared to baseline (P = .0059); however, CD16brCD62Lbr (segmented) neutrophils increased (P = .0031) and CD16dimCD62Lbr (banded) neutrophils decreased (P = .038). Banded neutrophils were lower in patients with severe lung damage at baseline (P = .035). Following WCL stimulation, ROS from segmented neutrophils was higher in patients with low Mtb loads even after adjusting for sex (P = .038), whereas IL-10-expressing CD16dimCD62Llo cells were higher in patients with mild damage (P = .0397) at baseline. CONCLUSIONS: High ROS generation, low levels of banded neutrophils, and high levels of IL-10-expressing CD16dimCD62Llo neutrophils are associated with reduced lung pathology at diagnosis. Hence, neutrophils are potential early indicators of TB severity and promising targets for TB host-directed therapy

    Genomic Correlates of Atherosclerosis in Ancient Humans

    Get PDF
    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman’s genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world
    corecore