6,117 research outputs found
Normative EMG activation patterns of school-age children during gait
Gait analysis is widely used in clinics to study walking abnormalities for surgery planning, definition of rehabilitation protocols, and objective evaluation of clinical outcomes. Surface electromyography allows the study of muscle activity non-invasively and the evaluation of the timing of muscle activation during movement. The aim of this study was to present a normative dataset of muscle activation patterns obtained from a large number of strides in a population of 100 healthy children aged 6-11 years. The activity of Tibialis Anterior, Lateral head of Gastrocnemius, Vastus Medialis, Rectus Femoris and Lateral Hamstrings on both lower limbs was analyzed during a 2.5-min walk at free speed. More than 120 consecutive strides were analyzed for each child, resulting in approximately 28,000 strides. Onset and offset instants were reported for each observed muscle. The analysis of a high number of strides for each participant allowed us to obtain the most recurrent patterns of activation during gait, demonstrating that a subject uses a specific muscle with different activation modalities even in the same walk. The knowledge of the various activation patterns and of their statistics will be of help in clinical gait analysis and will serve as reference in the design of future gait studie
Structural determination of archaeal UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with the bacterial cell wall intermediate UDP-N-acetylmuramic acid
The crystal structure of UDP-N-acetylglucosamine 4-epimerase (UDP-GlcNAc 4-epimerase; WbpP; EC 5.1.3.7), from the archaeal methanogen Methanobrevibacter ruminantium strain M1, was determined to a resolution of 1.65 Å. The structure, with a single monomer in the crystallographic asymmetric unit, contained a conserved N-terminal Rossmann fold for nucleotide binding and an active site positioned in the C-terminus. UDP-GlcNAc 4-epimerase is a member of the short-chain dehydrogenase/reductase superfamily, sharing sequence motifs and structural elements characteristic of this family of oxidoreductases and bacterial 4-epimerases. The protein was co-crystallized with coenzyme NADH and UDP-N-acetylmuramic acid, the latter an unintended inclusion and well known product of the bacterial enzyme MurB and a critical intermediate for bacterial cell wall synthesis. This is a non-native UDP sugar amongst archaea and was most likely incorporated from the Eschericha coli expression host during purification of the recombinant enzyme
Geometry of quantum observables and thermodynamics of small systems
The concept of ergodicity---the convergence of the temporal averages of
observables to their ensemble averages---is the cornerstone of thermodynamics.
The transition from a predictable, integrable behavior to ergodicity is one of
the most difficult physical phenomena to treat; the celebrated KAM theorem is
the prime example. This Letter is founded on the observation that for many
classical and quantum observables, the sum of the ensemble variance of the
temporal average and the ensemble average of temporal variance remains constant
across the integrability-ergodicity transition.
We show that this property induces a particular geometry of quantum
observables---Frobenius (also known as Hilbert-Schmidt) one---that naturally
encodes all the phenomena associated with the emergence of ergodicity: the
Eigenstate Thermalization effect, the decrease in the inverse participation
ratio, and the disappearance of the integrals of motion. As an application, we
use this geometry to solve a known problem of optimization of the set of
conserved quantities---regardless of whether it comes from symmetries or from
finite-size effects---to be incorporated in an extended thermodynamical theory
of integrable, near-integrable, or mesoscopic systems
Two-Particle Microrheology of quasi-2D Viscous Systems
We study the correlated motions of colloidal particles in a quasi-2D system
(Human Serum Albumin (HSA) protein molecules at an air-water interface) for
different surface viscosities . We observe a transition in the
behavior of the correlated motion, from 2-D interface dominated at high
to bulk fluid-dependent at low . The correlated motions
can be scaled onto a master curve which captures the features of this
transition. This master curve also characterizes the spatial dependence of the
flow field of a viscous interface in response to a force. From the flow field
and the correlated particle motions, we calculate a two-particle MSD (mean
square displacement) for direct comparison with rheological measurements.Comment: 4 pages, 4 figures, submitted to PR
Thermodynamics of an one-dimensional ideal gas with fractional exclusion statistics
We show that the particles in the Calogero-Sutherland Model obey fractional
exclusion statistics as defined by Haldane. We construct anyon number densities
and derive the energy distribution function. We show that the partition
function factorizes in the form characteristic of an ideal gas. The virial
expansion is exactly computable and interestingly it is only the second virial
coefficient that encodes the statistics information.Comment: 10pp, REVTE
- …