8,477 research outputs found
GAPS IN THE HEISENBERG-ISING MODEL
We report on the closing of gaps in the ground state of the critical
Heisenberg-Ising chain at momentum . For half-filling, the gap closes at
special values of the anisotropy , integer. We explain
this behavior with the help of the Bethe Ansatz and show that the gap scales as
a power of the system size with variable exponent depending on . We use
a finite-size analysis to calculate this exponent in the critical region,
supplemented by perturbation theory at . For rational
fillings, the gap is shown to be closed for {\em all} values of and
the corresponding perturbation expansion in shows a remarkable
cancellation of various diagrams.Comment: 12 RevTeX pages + 4 figures upon reques
Solutions to the Multi-Component 1/R Hubbard Model
In this work we introduce one dimensional multi-component Hubbard model of
1/r hopping and U on-site energy. The wavefunctions, the spectrum and the
thermodynamics are studied for this model in the strong interaction limit
. In this limit, the system is a special example of Luttinger
liquids, exhibiting spin-charge separation in the full Hilbert space.
Speculations on the physical properties of the model at finite on-site energy
are also discussed.Comment: 9 pages, revtex, Princeton-May1
Exact Solution of Heisenberg-liquid models with long-range coupling
We present the exact solution of two Heisenberg-liquid models of particles
with arbitrary spin interacting via a hyperbolic long-range potential. In
one model the spin-spin coupling has the simple antiferromagnetic Heisenberg
exchange form, while for the other model the interaction is of the
ferromagnetic Babujian-Takhatajan type. It is found that the Bethe ansatz
equations of these models have a similar structure to that of the
Babujian-Takhatajan spin chain. We also conjecture the integrability of a third
new spin-lattice model with long-range interaction.Comment: 7pages Revte
Transport Properties of a One-Dimensional Two-Component Quantum Liquid with Hyperbolic Interactions
We present an investigation of the sinh-cosh (SC) interaction model with
twisted boundary conditions. We argue that, when unlike particles repel, the SC
model may be usefully viewed as a Heisenberg-Ising fluid with moving
Heisenberg-Ising spins. We derive the Luttinger liquid relation for the
stiffness and the susceptibility, both from conformal arguments, and directly
from the integral equations. Finally, we investigate the opening and closing of
the ground state gaps for both SC and Heisenberg-Ising models, as the
interaction strength is varied.Comment: 10 REVTeX pages + 4 uuencoded figures, UoU-002029
Solution of Some Integrable One-Dimensional Quantum Systems
In this paper, we investigate a family of one-dimensional multi-component
quantum many-body systems. The interaction is an exchange interaction based on
the familiar family of integrable systems which includes the inverse square
potential. We show these systems to be integrable, and exploit this
integrability to completely determine the spectrum including degeneracy, and
thus the thermodynamics. The periodic inverse square case is worked out
explicitly. Next, we show that in the limit of strong interaction the "spin"
degrees of freedom decouple. Taking this limit for our example, we obtain a
complete solution to a lattice system introduced recently by Shastry, and
Haldane; our solution reproduces the numerical results. Finally, we emphasize
the simple explanation for the high multiplicities found in this model
Thermodynamics of an one-dimensional ideal gas with fractional exclusion statistics
We show that the particles in the Calogero-Sutherland Model obey fractional
exclusion statistics as defined by Haldane. We construct anyon number densities
and derive the energy distribution function. We show that the partition
function factorizes in the form characteristic of an ideal gas. The virial
expansion is exactly computable and interestingly it is only the second virial
coefficient that encodes the statistics information.Comment: 10pp, REVTE
A Note on Dressed S-Matrices in Models with Long-Range Interactions
The {\sl dressed} Scattering matrix describing scattering of quasiparticles
in various models with long-range interactions is evaluated by means of
Korepin's method\upref vek1/. For models with -interactions
the S-matrix is found to be a momentum-independent phase, which clearly
demonstrates the ideal gas character of the quasiparticles in such models. We
then determine S-matrices for some models with -interaction
and find them to be in general nontrivial. For the -limit of the
-interaction we recover trivial S-matrices, thus exhibiting
a crossover from interacting to noninteracting quasiparticles. The relation of
the S-matrix to fractional statistics is discussed.Comment: 18 pages, jyTeX (macro included - just TeX the file) BONN-TH-94-13,
revised version: analysis of models with 1/sinh^2 interaction adde
Spectrum and Thermodynamics of the one-dimensional supersymmetric t-J model with exchange and hopping
We derive the spectrum and the thermodynamics of the one-dimensional
supersymmetric t-J model with long range hopping and spin exchange using a set
of maximal-spin eigenstates. This spectrum confirms the recent conjecture that
the asymptotic Bethe-ansatz spectrum is exact. By empirical determining the
spinon degeneracies of each state, we are able to explicitly construct the free
energy.Comment: 13 pages, Latex, (published in PRB46, 6639 (1992)
Long Range Interaction Models and Yangian Symmetry
The generalized Sutherland-Romer models and Yan models with internal spin
degrees are formulated in terms of the Polychronakos' approach and RTT relation
associated to the Yang-Baxter equation in consistent way. The Yangian symmetry
is shown to generate both models. We finally introduce the reflection algebra
K(u) to the long range models.Comment: 13 pages, preprint of Nankai Institute of Mathematics ( Theoretical
Physics Division ), published in Physical Review E of 1995. For hard copy,
write to Prof. Mo-lin GE directly. Do not send emails to this accoun
Persistent currents through a quantum impurity: Protection through integrability
We consider an integrable model of a one-dimensional mesoscopic ring with the
conduction electrons coupled by a spin exchange to a magnetic impurity. A
symmetry analysis based on a Bethe Ansatz solution of the model reveals that
the current is insensitive to the presence of the impurity. We argue that this
is true for any integrable impurity-electron interaction, independent of choice
of physical parameters or couplings. We propose a simple physical picture of
how the persistent current gets protected by integrability.Comment: 5 pages, minor update
- …