10 research outputs found
Directed Volcanic Blast as a Tragedy of October 26Th, 2010 at Merapi Volcano, Central Java
DOI: 10.17014/ijog.v8i3.163Merapi is an active strato volcano located in Central Java. This volcano is regarded as the most active and most dangerous volcano in Indonesia. Since the twentieth century, the activities have comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of over-steepened domes producing pyroclastic flows, commonly defined as “Merapi-Type”. Since October 2010, however, explosive eruptions of a relatively large size have occurred to VEI 4, and some associated pyroclastic flows were larger and had farther reach than any produced on July 2006. These events may also be regarded as another type of eruptions for Merapi. On October26th, 2010 such event happened, even though it was not caused by pyroclastic flows of the dome collapses, about thirty people were killed including Mbah Marijan, known as the Merapi volcano's spiritual gatekeeper, who was found dead at his home approximately 4 km from the crater. The Yogyakarta Palace subsequently confirmed his death. This time the disaster was caused by a sudden directed blast that took place at 17:02 pm throughout Cangkringan, Kinahrejo Village, at the south flank of Merapi Volcano. The victims were the local people who did not predict the blast threatened their areas, because they believed that the pyroclastic flows from the dome collapses as long as they knew, did not threaten their areas, and pyroclastic flows would flow down following the Boyong River as the closest valley to their village. The blast swept an area about 8 km2, reaching about 5 km in distance, deposited thin ash, and toppled all trees to the south around the Kinahrejo and Pakem areas. The blast that reached Kinahrejo Village seemed to have moderate temperatures, because all trees facing the crater were not burnt. However, the victims were affected by dehydration and blanketed by fine ash
Ignimbrite Analyses of Batur Caldera, Bali, Based on 14C Dating
Http://dx.doi.org/10.17014/ijog.vol4no3.20094The Batur Caldera, in the northeastern part of Bali Island, is an elliptical collapse structure 13.8 by 10 km in size and another circular composite collapse structure with a diameter of 7.5 km in its centre. Two stages of the collapse were interrupted by silicic andesite lavas and domes. The first collapse was initiated by the eruption of about 84 km3 of the dacitic "Ubud Ignimbrite", about 29,300 years B.P., which caused a steep-walled depression about 1 km deep. The second ignimbrite was erupted from a large crater about the present lake, and it produced about 19 km3 of a similar voluminous dacitic ignimbrite, called the "Gunungkawi Ignimbrite" about 20,150 years B.P. This second eruption trig- gered a second collapse, which created the central circular caldera, and formed a basin structure. Both the Ubud and Gunungkawi Ignimbrites consist of a similar dacitic composition, white to red (the most abundant nearly 90 %) and dark grey to black dacitic pumice clasts. The large clasts, up to 20 cm in diameter, are in the non-welded ignimbrite, particularly in the upper part of the Gunungkawi Ignimbrite. The intracaldera ignimbrite, called the "Batur Ignimbrite" about 5 km3 in volume is a densely welded ignimbrite and generally shows typical welded features. The ignimbrite comprises at least five different flow units, separated by thin (15 - 40 cm) welded pumiceous airfall deposits, with flattened pumice clasts. Another large eruption occurred about 5,500 years B.P., producing around 0.09 km3 andesitic ignimbrite. This was initiated by phreatomagmatic eruptions, indicated by thick phreatomagmatic and surge deposits, underlying the ignimbrite. The caldera and its vicinity are partly filled, and variably mantled by later eruptive products of dacitic and andesitic phreatomagmatic and airfall deposits
Cinder Cones of Mount Slamet, Central Java, Indonesia
Http://dx.doi.org/10.17014/ijog.vol4no1.20096The Mount Slamet volcanic field in Central Java, Indonesia, contains thirty five cinder cones within an area of 90 sq. km in the east flank of the volcano. The cinder cones occur singly or in small groups, with diameter of the base ranges from 130 - 750 m and the height is around 250 m. Within the volcanic field, the cinder cones are spread over the volcanic area at the distance of 4 to 14 km from the eruption center of the Slamet Volcano. They are concentrated within latitudes 7°11'00” - 7°16'00” S,, and longitudes 109°15'00” - 109°18'00” E. The density of the cinder cones is about 1.5 cones/km2. Most of the cinder cones lie on the Tertiary sedimentary rocks along the NW-trending fault system and on radial fractures. The structural pattern may be related to the radial faults in this region. The cone surfaces are commonly blanketed by Slamet air-falls and lava flows. The deposits consist of poorly bedded, very coarse-grained, occasionally overlain by oxidized scoria, and large-sized of ballistic bombs and blocks. There are various kind of volcanic bombs originating from scoriae ballistic rock fragments. The other kind of volcanic bombs are breadcrust bomb, almond seed or contorted shape. All of the cinder cones have undergone degradation, which can be observed from the characters of gully density and surface morphology. By using Porter parameters, Hco is equal to 0.25 Wco, whilst Wcr is equal to 0.40 Wco. The Hco/Wco ratio is higher than Hco = 0.2 Wco reference line. A radiometric dating using K-Ar method carried out on a scoria bomb yields the age of 0.042 + 0.020 Ma
The August 2010 Phreatic Eruption of Mount Sinabung, North Sumatra
DOI: 10.17014/ijog.v8i1.155Mount Sinabung, located in Karo Regency, North Sumatra Province, is a strato volcano having four active craters. Since its latest eruption about 1,200 year ago, a phreatic eruption occurred on August 27th, 2010. The eruption took place in Crater-I, which was initiated by a greyish white plume and then followed by black plumes as high as 2000 m above the crater. Altered rock fragments and ash were erupted during this event. The altered rocks show a development of argillic alterations which was formed in the hydrothermal system in depth. The alteration zone is formed along the northeast-southwest and northwest-southeast trend across the three craters. All of the craters are actively discharging solfataric gases, of which sulphur deposits are resulted, and they have been quarried by the local people. The age of the latest magmatic eruption was dated by 14C method from the charcoal sample found in the pyroclastic flow deposits near Bekerah Village
Magma Chamber Model of Batur Caldera, Bali, Indonesia: Compositional Variation of Two Facies, Large-Volume Dacitic Ignimbrites
DOI:10.17014/ijog.2.2.111-124Batur is one of the finest known calderas on Earth, and is the source of at least two major ignimbrite eruptions with a combined volume of some 84 km3 and 19 km3. These ignimbrites have a similar compositions, raising the question of whether they are geneticaly related. The Batur Ignimbrite-1 (BI-1) is crystal poor, containing rhyodacitic (68 - 70wt % SiO2), white to grey pumices and partly welded and unwelded. The overlying Batur Ignimbrite-2 (BI-2) is a homogeneous grey to black dacitic pumices (64 - 66 wt % SiO2), unwelded and densely welded (40 - 60% vesicularity), crystal and lithic rich. Phase equilibria indicate that the Batur magma equilibrated at temperatures of 1100 - 1300oC with melt water contents of 3 - 6 wt%. The post-eruptive Batur magma was cooler (<1100oC) and it is melt more water rich (> 6 wt % H2O). A pressure of 20 kbar is infered from mineral barometry for the Batur magma chamber. Magmatic chamber model is one in which crystals and melt separate from a convecting Batur magma by density differences, resulting in a stratified magma chamber with a homogeneous central zone, a crystal-rich accumulation zone near the walls or base, and a buoyant, melt-rich zone near the top. This is consistent with the estimated magma temperatures and densities: the pre-eruptive BI-1 magma was hoter (1300oC) and more volatile rich (6 wt % H2O) with density 2.25 g/cm3 than the BI-2 magma (1200oC; 4 wt % H2O) in density was higher (2.50 g/cm3). Batur melt characteristics and intensive parameters are consistent with a volatile oversaturation-driven eruption. However, the higher H2O content, high viscosity and low crystal content of the BI-1 magma imply an external eruption trigger