8 research outputs found

    Developing an Integrated Ocean Observing System for New Zealand

    Get PDF
    New Zealand (NZ) is an island nation with stewardship of an ocean twenty times larger than its land area. While the challenges facing NZ’s ocean are similar to other maritime countries, no coherent national plan exists that meets the needs of scientists, stakeholders or kaitiakitanga (guardianship) of NZ’s ocean in a changing climate. The NZ marine science community used the OceanObs’19 white paper to establish a framework and implementation plan for a collaborative NZ ocean observing system (NZ-OOS). Co-production of ocean knowledge with Māori will be embedded in this national strategy for growing a sustainable, blue economy for NZ. The strengths of an observing system for a relatively small nation come from direct connections between the science impetus through to users and stakeholders of an NZ-OOS. The community will leverage off existing ocean observations to optimize effort and resources in a system that has historically made limited investment in ocean observing. The goal of the community paper will be achieved by bringing together oceanographers, data scientists and marine stakeholders to develop an NZ-OOS that provides best knowledge and tools to the sectors of society that use or are influenced by the ocean

    Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California

    Get PDF
    Manuscript received 6 March 2017, in final form 31 July 2017The article of record as published may be located at http://journals.ametsoc.org/doi/full/10.1175/JPO-D-17-0045.1Moored observations of temperature and current were collected on the inner continental shelf off Point Sal, California, between 9 June and 8 August 2015. The measurements consist of 10 moorings in total: 4 moorings each on the 50- and 30-m isobaths covering a 10-km along-shelf distance and an across-shelf section of moorings on the 50-, 40-, 30-, and 20-m isobaths covering a 5-km distance. Energetic, highly variable, and strongly dissipating transient wave events termed internal tide bores and internal solitary waves (ISWs) dominate the records. Simple models of the bore and ISW space–time behavior are implemented as a temperature match filter to detect events and estimate wave packet parameters as a function of time and mooring position. Wave-derived quantities include 1) group speed and direction; 2) time of arrival, time duration, vertical displacement amplitude, and waves per day; and 3) energy density, energy flux, and propagation loss. In total, over 1000 bore events and over 9000 ISW events were detected providing well-sampled statistical distributions. Statistics of the waves are rather insensitive to position along shelf but change markedly in the across-shelf direction. Two compelling results are 1) that the probability density functions for bore and ISW energy flux are nearly exponential, suggesting the importance of interference and 2) that wave propagation loss is proportional to energy flux, thus giving an exponential decay of energy flux toward shore with an e-folding scale of 2–2.4 km and average dissipation rates for bores and ISWs of 144 and ÂŻ Âč, respectively.Office of Naval ResearchNational Science FoundationN0001417WX01136N00014-17-1-2890OCE-1521653N0017317WR0012
    corecore