4,618 research outputs found

    Toward quantum processing in molecules: A THz-bandwidth coherent memory for light

    Full text link
    The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to 1ns, enabling 10,000 operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.Comment: 5 pages, 3 figures, 1 tabl

    Ultrafast slow-light: Raman-induced delay of THz-bandwidth pulses

    Full text link
    We propose and experimentally demonstrate a scheme to generate optically-controlled delays based on off-resonant Raman absorption. Dispersion in a transparency window between two neighboring, optically-activated Raman absorption lines is used to reduce the group velocity of broadband 765 nm pulses. We implement this approach in a potassium titanyl phosphate (KTP) waveguide at room temperature, and demonstrate Raman-induced delays of up to 140 fs for a 650-fs duration, 1.8-THz bandwidth, signal pulse; the available delay-bandwidth product is 1\approx1. Our approach is applicable to single photon signals, offers wavelength tunability, and is a step toward processing ultrafast photons.Comment: 5+4 pages, 4+2 figure

    Towards a physical interpretation for the Stephani Universes

    Get PDF
    A physicaly reasonable interpretation is provided for the perfect fluid, sphericaly symmetric, conformally flat ``Stephani Universes''. The free parameters of this class of exact solutions are determined so that the ideal gas relation p=nkTp=n k T is identicaly fulfiled, while the full equation of state of a classical monatomic ideal gas and a matter-radiation mixture holds up to a good approximation in a near dust, matter dominated regime. Only the models having spacelike slices with positive curvature admit a regular evolution domain that avoids an unphysical singularity. In the matter dominated regime these models are dynamicaly and observationaly indistinguishable from ``standard'' FLRW cosmology with a dust source.Comment: 17 pages, 2 figures, LaTeX with revtex style, submitted to General Relativity and Gravitatio

    Switched wave packets: A route to nonperturbative quantum control

    Get PDF
    The dynamic Stark effect due to a strong nonresonant but nonionizing laser field provides a route to quantum control via the creation of novel superposition states. We consider the creation of a field-free "switched" wave packet through adiabatic turn-on and sudden turn-off of a strong dynamic Stark interaction. There are two limiting cases for such wave packets. The first is a Raman-type coupling, illustrated by the creation of field-free molecular axis alignment. An experimental demonstration is given. The second case is that of dipole-type coupling, illustrated by the creation of charge localization in an array of quantum wells

    Evolution of radial profiles in regular Lemaitre-Tolman-Bondi dust models

    Full text link
    We undertake a comprehensive and rigorous analytic study of the evolution of radial profiles of covariant scalars in regular Lemaitre-Tolman-Bondi dust models. We consider specifically the phenomenon of "profile inversions" in which an initial clump profile of density, spatial curvature or the expansion scalar, might evolve into a void profile (and vice versa). Previous work in the literature on models with density void profiles and/or allowing for density profile inversions is given full generalization, with some erroneous results corrected. We prove rigorously that if an evolution without shell crossings is assumed, then only the 'clump to void' inversion can occur in density profiles, and only in hyperbolic models or regions with negative spatial curvature. The profiles of spatial curvature follow similar patterns as those of the density, with 'clump to void' inversions only possible for hyperbolic models or regions. However, profiles of the expansion scalar are less restrictive, with profile inversions necessarily taking place in elliptic models. We also examine radial profiles in special LTB configurations: closed elliptic models, models with a simultaneous big bang singularity, as well as a locally collapsing elliptic region surrounded by an expanding hyperbolic background. The general analytic statements that we obtain allow for setting up the right initial conditions to construct fully regular LTB models with any specific qualitative requirements for the profiles of all scalars and their time evolution. The results presented can be very useful in guiding future numerical work on these models and in revising previous analytic work on all their applications.Comment: Final version to appear in Classical and Quantum Gravity. Readers eager to know the results and implications without having to go through the technical detail are recommended to go directly to the summary and discussion in the final section (section 11). Typos have been corrected and an important reference has been adde
    corecore