37 research outputs found

    Defining the tipping point. A complex cellular life/death balance in corals in response to stress

    Get PDF
    Apoptotic cell death has been implicated in coral bleaching but the molecules involved and the mechanisms by which apoptosis is regulated are only now being identified. In contrast the mechanisms underlying apoptosis in higher animals are relatively well understood. To better understand the response of corals to thermal stress, the expression of coral homologs of six key regulators of apoptosis was studied in Acropora aspera under conditions simulating those of a mass bleaching event. Significant changes in expression were detected between the daily minimum and maximum temperatures. Maximum daily temperatures from as low as 3°C below the bleaching threshold resulted in significant changes in both pro- and anti-apoptotic gene expression. The results suggest that the control of apoptosis is highly complex in this eukaryote-eukaryote endosymbiosis and that apoptotic cell death cascades potentially play key roles tipping the cellular life/death balance during environmental stress prior to the onset of coral bleaching

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    Automated Generation of Kinetic Chemical Mechanisms Using Rewriting

    No full text
    Colloque avec actes et comité de lecture. internationale.International audienceSeveral software systems have been developed recently for the automated generation of combustion reactions kinetic mechanisms using different representations of species and reactions and different generation algorithms. In parallel, several software systems based on rewriting have been developed for the easy modeling and prototyping of systems using rules controlled by strategies. This paper presents our current experience in using the rewrite system {\sf ELAN} for prototyping the automatic generation of the combustion reactions mechanisms previously implemented in the {\sf EXGAS} kinetic mechanism generator system. We describe how to express in {\sf ELAN} acyclic and cyclic molecules, reactants, elementary reactions and the primary mechanism for acyclic species. Examples and generated outputs are given

    A Rule-Based Approach for Automated Generation of Kinetic Chemical Mechanisms

    No full text
    Colloque avec actes et comité de lecture. internationale.International audienceSeveral software systems have been developed recently for the automated generation of combustion reactions kinetic mechanisms using different representations of species and reactions and different generation algorithms. In parallel, several software systems based on rewriting have been developed for the easy modeling and prototyping of systems using rules controlled by strategies. This paper presents our current experience in using the rewrite system \ELAN\ for the automated generation of the combustion reactions mechanisms previously implemented in the \EXGAS\ kinetic mechanism generator system. We emphasize the benefits of using rewriting and rule-based programming controlled by strategies for the generation of kinetic mechanisms
    corecore