9 research outputs found

    Perinatal thymic-derived CD8αβ-expressing γδ T cells are innate IFN-γ producers that expand in IL-7R-STAT5B-driven neoplasms

    Get PDF
    The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αβ heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αβ+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R–STAT5B signaling promotes a supraphysiological accumulation of CD8αβ+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αβ+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αβ+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer

    Central role of Sp1-regulated CD39 in hypoxia/ischemia protection

    No full text
    Hypoxia is common to several inflammatory diseases, where multiple cell types release adenine-nucleotides (particularly adenosine triphosphate/adenosine diphosphate). Adenosine triphosphate/adenosine diphosphate is metabolized to adenosine through a 2-step enzymatic reaction initiated by CD39 (ectonucleoside-triphosphate-diphosphohydrolase-1). Thus, extracellular adenosine becomes available to regulate multiple inflammatory endpoints. Here, we hypothesized that hypoxia transcriptionally up-regulates CD39 expression. Initial studies revealed hypoxia-dependent increases in CD39 mRNA and immunoreactivity on endothelia. Examination of the human CD39 gene promoter identified a region important in hypoxia inducibility. Multiple levels of analysis, including site-directed mutagenesis, chromatin immunoprecipitation, and inhibition by antisense, revealed a critical role for transcription-factor Sp1 in hypoxia-induction of CD39. Using a combination of cd39−/− mice and Sp1 small interfering RNA in in vivo cardiac ischemia models revealed Sp1-mediated induction of cardiac CD39 during myocardial ischemia. In summary, these results identify a novel Sp1-dependent regulatory pathway for CD39 and indicate the likelihood that CD39 is central to protective responses to hypoxia/ischemia

    High activation of STAT5A drives peripheral T-cell lymphoma and leukemia

    No full text
    Recurrent gain-of-function mutations in the transcription factors S7AT5A and much more in STAT5B were found in hematopoietic malignancies with the highest proportion in mature T- and natural killer-cell neoplasms (peripheral T-cell lymphoma, PTCL). No targeted therapy exists for these heterogeneous and often aggressive diseases. Given the shortage of models for PTCL, we mimicked graded STAT5A or STAT5B activity by expressing hyperactive Stat5a or STAT5B variants at low or high levels in the hematopoietic system of transgenic mice. Only mice with high activity levels developed a lethal disease resembling human PTCL. Neoplasia displayed massive expansion of CD8(+) T cells and destructive organ infiltration. T cells were cytokine-hypersensitive with activated memory CD8(+). T-lymphocyte characteristics. Histopathology and mRNA expression profiles revealed close correlation with distinct subtypes of PTCL. Pronounced STAT5 expression and activity in samples from patients with different subsets underline the relevance of JAK/STAT as a therapeutic target. JAK inhibitors or a selective STAT5 SH2 domain inhibitor induced cell death and ruxolitinib blocked T-cell neoplasia in vivo. We conclude that enhanced STAT5A or STAT5B action both drive PTCL development, defining both STAT5 molecules as targets for therapeutic intervention

    Hepatic growth hormone - JAK2 - STAT5 signalling: Metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression

    No full text
    corecore