23 research outputs found

    In vitro assessment of pacing as therapy for aortic regurgitation

    Get PDF
    Background and objective: Clinical evaluation of pacing therapy in mitigating the aortic insufficiency after transchateter aortic valve implantation often gives contradictory outcomes. This study presents an in vitro investigation aimed at clarifying the effect of pacing on paravalvular leakage. / Methods: A series of in vitro tests reproducing the heart operating changes clinically obtained by pacing was carried out in a 26 mm Edwards Sapien XT prosthesis with mild paravalvular leakage. The effect of pacing on the regurgitant volumes per cycle and per minute was quantified, and the energy and power consumed by the left ventricle were calculated. / Results: Results indicate that though pacing results in some reduction in the total regurgitation per cycle, the volume of fluid regurgitating per minute increases substantially, causing overload of left ventricle. / Conclusions: Our tests indicate no effective haemodynamic benefit from pacing, suggesting a prudential clinical use of this therapy for the treatment of postoperative aortic regurgitation

    Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength

    Get PDF
    The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections

    Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    Get PDF
    INTRODUCTION: Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. METHODS: MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. RESULTS: The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E(2 )secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G(0)/G(1 )checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E(2 )in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and increased necrosis in the tumor mass. CONCLUSION: The disparate molecular mechanisms of celecoxib-induced growth inhibition in human breast cancer cells depends upon the level of COX-2 expression and the invasive potential of the cell lines examined. Data suggest a role for COX-2 not only in the growth of cancer cells but also in activating the angiogenic pathway through regulating levels of vascular endothelial growth factor

    Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests significant impact on bacterial virulence and fitness

    Get PDF
    [Abstract] Bacterial genomics has revealed substantial amounts of prophage DNA in bacterial genomes. This integrated viral DNA has been shown to play important roles in the evolution of bacterial pathogenicity. Acinetobacter baumannii has shown a fast progression as a nosocomial multi-resistant pathogen in recent years, and is now considered one of the most dangerous microorganisms in hospital environments. The role of prophages in the evolution of A. baumannii pathogenicity has not yet been explored. In this context, we aimed at evaluating the impact of prophages on A. baumannii genomic diversity and pathogenicity. [...]info:eu-repo/semantics/publishedVersio

    In-vitro and ex-vivo Hemodynamic Te 1 sting of an Innovative Occluder for Paravalvular Leak after Transcather Aortic Valve Implantation

    No full text
    This study aims at achieving a proof-of-concept for a novel device designed to occlude the orifices that may form between transcatheter valves and host tissues after TAVI. The device effect on the performance of a SAPIEN XT with a paravalvular gap was assessed into an in vitro and ex vivo pulse duplicator. The in vitro tests were performed complying with the standard international regulations, measuring the trasvalvular pressure and regurgitant volumes with and without the paravalvular gap, and with the occluder correctly positioned into the gap. In the second series of tests, the leakage reduction due to the presence of the occluder was assessed for the same setup, into a beating swine heart. The occluder implantation decreased the regurgitant fraction of about 50% for the in vitro assessment and 75% for the ex vivo test, under rest operating conditions. These results suggest that suitably designed occluders can lead to important benefit in the PVL treatment

    Automatic Setup of a Pulse Duplicator Apparatus through a Dither-free ESC Approach

    No full text
    With the help of in-vitro simulators, it is possible to simulate human physiological conditions to test medical equipment, accelerating innovation cycles and exploring the search for new and efficient solutions. In this paper, we consider the Pulse Duplicator in use at the University of Padova Healing Research Laboratory in Italy, for testing the effectiveness of prosthetic heart valves under realistic cardiac settings. By using a dither-free extremum seeking controller, that uses 1st order least squares fits for gradient estimation, we automatically adjust a fundamental system parameter in real-time, i.e. a system valve closing degree, that ensures a physiological pressure drop to simulate the peripheral resistance to flow in the human systemic circulation
    corecore