4 research outputs found

    Large Centimeter-Sized Macroporous Ferritin Gels as Versatile Nanoreactors

    No full text
    Organized assemblies of bionanoparticles such as ferritin provides templates that can be exploited for nanotechnological applications. Organization of ferritin into well-defined three-dimensional assemblies is challenging and has attracted considerable attention recently. We have synthesized, for the first time, large (centimeter-sized) self-standing macroporous scaffold monoliths from ferritin bionanoparticles, using dynamic templating of surfactant H<sub>1</sub> domains. These scaffolds comprise three-dimensionally connected strands of ferritin, organized as a porous gel with porosity ∼55 μm. The iron oxide inside the ferritin scaffold can be easily replaced with catalytically active monodisperse zerovalent transition metal nanoparticles using a very simple protocol. Since the ferritin is cross-linked in the scaffold, it is significantly robust with enhanced thermal stability and better tolerance toward several organic solvents in comparison to the native ferritin bionanoparticle. In addition, the scaffold macropores facilitate substrate and reagent transport and hence the monoliths containing active Pd or iron oxide nanoparticles inside apo-ferritin bionanoparticles were used as a recyclable heterogeneous catalyst for the oxidation of 2,3,6-trimethyl phenol to 2,3,6-trimethyl-1,4-benzoquinone (precursor for Vitamin E synthesis) and for Suzuki–Miyaura cross-coupling reaction in both aqueous and organic solvents. The protein shell around the nanoparticles protects them from agglomeration, a phenomenon that otherwise plagues nanoparticles-based catalysis. The presence of macropores allow the ferritin scaffold to act as catalytic monolith for continuous flow reactions having rapid reaction rates, while offering a low pressure drop. Finally, the Pd@apo-ferritin scaffold was immobilized inside a steel cartridge and used for the continuous flow hydrogenation of alkenes to their corresponding alkanes for 15 cycles without any loss of activity

    Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals

    No full text
    Therapeutic biologics (i.e., proteins) have been widely recognized for the treatment, prevention, and cure of a variety of human diseases and syndromes. However, design of novel protein-delivery systems to achieve a nontoxic, constant, and efficient delivery with minimal doses of therapeutic biologics is still challenging. Here, recombinant spider silk-based materials are employed as a delivery system for the administration of therapeutic biologicals. Hydrogels made of the recombinant spider silk protein eADF4­(C16) were used to encapsulate the model biologicals BSA, HRP, and LYS by direct loading or through diffusion, and their release was studied. Release of model biologicals from eADF4­(C16) hydrogels is in part dependent on the electrostatic interaction between the biological and the recombinant spider silk protein variant used. In addition, tailoring the pore sizes of eADF4­(C16) hydrogels strongly influenced the release kinetics. In a second approach, a particles-in-hydrogel system was used, showing a prolonged release in comparison with that of plain hydrogels (from days to week). The particle-enforced spider silk hydrogels are injectable and can be 3D printed. These initial studies indicate the potential of recombinant spider silk proteins to design novel injectable hydrogels that are suitable for delivering therapeutic biologics

    Fe-TAML Encapsulated Inside Mesoporous Silica Nanoparticles as Peroxidase Mimic: Femtomolar Protein Detection

    No full text
    Peroxidase, such as horseradish peroxidase (HRP), conjugated to antibodies are routinely used for the detection of proteins via an ELISA type assay in which a critical step is the catalytic signal amplification by the enzyme to generate a detectable signal. Synthesis of functional mimics of peroxidase enzyme that display catalytic activity which far exceeds the native enzyme is extremely important for the precise and accurate determination of very low quantities of proteins (fM and lower) that is necessary for early clinical diagnosis. Despite great advancements, analyzing proteins of very low abundance colorimetrically, a method that is most sought after since it requires no equipment for the analysis, still faces great challenges. Most reported HRP mimics that show catalytic activity greater than native enzyme (∼10-fold) are based on metal/metal-oxide nanoparticles such as Fe<sub>3</sub>O<sub>4</sub>. In this paper, we describe a second generation hybrid material developed by us in which approximately 25 000 alkyne tagged biuret modified Fe-tetraamido macrocyclic ligand (Fe-TAML), a very powerful small molecule synthetic HRP mimic, was covalently attached inside a 40 nm mesoporous silica nanoparticle (MSN). Biuret-modified Fe-TAMLs represent one of the best small molecule functional mimics of the enzyme HRP with reaction rates in water close to the native enzyme and operational stability (pH, ionic strength) far exceeding the natural enzyme. The catalytic activity of this hybrid material is around 1000-fold higher than that of natural HRP and 100-fold higher than that of most metal/metal oxide nanoparticle based HRP mimics reported to date. We also show that using antibody conjugates of this hybrid material it is possible to detect and, most importantly, quantify femtomolar quantities of proteins colorimetrically in an ELISA type assay. This represents at least 10-fold higher sensitivity than other colorimetric protein assays that have been reported using metal/metal oxide nanoparticles as HRP mimic. Using a human IgG expressing cell line, we were able to demonstrate that the protein of interest human IgG could be detected from a mixture of interfering proteins in our assay

    Soft Colloidal Scaffolds Capable of Elastic Recovery after Large Compressive Strains

    No full text
    Assemblies of inorganic or glassy particles are typically brittle and cannot sustain even moderate deformations. This restricts the use of such materials to applications where they do not experience significant loading or deformation. Here, we demonstrate a general strategy to create centimeter-size macroporous monoliths, composed primarily (>90 wt %) of colloidal particles, that recover elastically after compression to about one-tenth their original size. We employ ice templating of an aqueous dispersion of particles, polymer, and cross-linker such that cross-linking happens in the frozen state. This method yields elastic composite scaffolds for starting materials ranging from nanoparticles to micron-sized dispersions of inorganics or glassy lattices. The mechanical response of the monoliths is also qualitatively independent of polymer type, molecular weight, and even cross-linking chemistry. Our results suggest that the monolith mechanical properties arise from the formation of a unique hybrid microstructure, generated by cross-linking the polymer during ice templating. Particles that comprise the scaffold walls are connected by a cross-linked polymeric mesh. This microstructure results in soft monoliths, with moduli ∼O (10<sup>4</sup> Pa), despite the very high particle content in their walls. A remarkable consequence of this microstructure is that the monolith mechanical response is entropic in origin: the modulus of these scaffolds increases with temperature over a range of 140 K. We show that interparticle connections formed by cross-linking during ice templating determine the monolith modulus and also allow relative motion between connected particles, resulting in entropic elasticity
    corecore