3 research outputs found

    Volcanic passive continental margin beneath Maitri station in central DML, East Antarctica: constraints from crustal shear velocity through receiver function modelling

    No full text
    Dronning Maud Land (DML) in East Antarctica is considered to be a key area for the reconstruction of the Gondwana supercontinent. We investigate the crustal shear wave velocity (Vs) model beneath the Maitri station, situated in the central DML of East Antarctica, through receiver function modelling. The analysis shows an average crustal thickness of 38.50 ± 0.5 km and a Vp/Vs ratio of 1.784 ± 0.002. The obtained Vs structure suggests that the topmost ca. 2.5 km of the crust contains ice and sediments with low Vs (1.5–2.0 km/s). This layer is underlain by a thick (ca. 12.5 km) layer of Vs = 2.25–2.6 km/s, suggestive of an extrusive igneous rock (rhyolite) at this depth range. Between 16 and 28 km depth, the Vs increases from 2.9 to 3.4 km/s. In the lower crust, a 7 km thick layer of Vs = 3.9 km/s is followed by 6 km thick underplated layer (Vs = 4.1 km/s) at the crust–mantle boundary. The uppermost mantle Vs is ca. 4.3 km/s. With the observation of underplated material in the lowermost crust, extrusive volcanic rocks in the upper crust, seaward dipping reflectors in the surrounding and a general paucity of seismicity, we believe the crust beneath the Maitri station represents a volcanic passive continental margin. We also believe that after its origin in the Precambrian and during its subsequent evolution it might have been affected by the post-Precambrian tectono-thermal event(s) responsible for the Gondwana supercontinent break-up

    Electrical structure beneath Schirmacher Oasis, East Antarctica: a magnetotelluric study

    No full text
    Maitri Station (70.76°S; 11.73°E) is located in Schirmacher Oasis, a coastal nunatak in north-central Dronning Maud Land covering an area of 35 km2. Here, we report results from the first magnetotelluric experiments and delineate the deep electrical conductivity structure under Schirmacher Oasis using the data acquired during the 24th Indian Antarctic Scientific Expedition. The magnetotelluric method has the advantage of shallow to deeper level coverage as the data acquisition covers a wide frequency band of 10−3–103 Hz, permitting different penetration depths depending on the frequency and conductivity of the layer under investigation. The modelling results indicate the presence of a highly resistive (8000–10 000 ohm m) upper crust, which shows a lateral variation in thickness from 20 km (below site 6) in the east to 10 km (between sites 1 and 2) in the west. It is underlain by a less resistive (500–600 ohm m) lower crust. The highly resistive upper crustal structure supports the existing notion that western Dronning Maud Land is a stable, cratonic platform. Results of free-air gravity, seismic, geomagnetic and surface wave dispersion investigations in East Antarctica also indicate a cratonic-type crust. The results of our study allow us to identify a westward thinning of the upper crust with a marked boundary between sites 1 and 2. We also find evidence for the continuity of the Mozambique mobile belt in East Antarctica on the western side of Schirmacher Oasis
    corecore