163 research outputs found

    The effect of crude protein content of the diet on renal energy losses in horses

    Get PDF
    Renal energy losses of horses are high in comparison with other species. In the present study, more data were obtained on this parameter to improve predictive equations for renal energy losses. Four adult ponies (247-344 kg body weight [BW]) were fed with eight different diets based on first cut hay, second cut hay, early first cut fresh grass, late cut herbs-grass mix, early cut clover-grass mix, sugar beet pulp, rice bran and straw. Feed intake was measured, and urine and faeces were quantitatively collected for 3 x 12 hr at daytime and afterwards 3 x 12 hr at nighttime. Feed was analysed for crude nutrients, gross energy, amino acids and neutral-detergent-insoluble crude protein (NDICP);faeces were analysed for crude nutrients and gross energy;and urine was analysed for nitrogen (N) and gross energy. Renal energy losses per gram dry matter (DM) intake (y;kJ/g DM) were strictly correlated to protein content in DM (x;g/kg DM): y = 0.325 + 0.00431x;r(2) = .81;n = 38;p < .001. The data suggest that the intercept represents energy losses by detoxification products such as hippuric acid and the regression coefficient by protein metabolites such as urea

    A new protein evaluation system for horse feed from literature data

    Get PDF
    Few data on apparent pre-caecal digestibility (APCD) of crude protein (CP) and particularly amino acids (AA) are available from studies with horses. Protein bound in cell walls (i.e. neutral detergent insoluble CP (NDICP)) is unlikely to be decomposed by digestive enzymes in the small intestine. In contrast the corresponding analytical fraction of neutral detergent soluble CP (NDSCP) (NDSCP = CP-NDICP) is likely to be available for auto-enzymatic digestion. A literature analysis on the relationship between NDICP/NDSCP and pre-caecal indigestible/digestible CP was carried out. There was a strong positive relationship between NDICP and pre-caecal indigestible CP, which suggests that NDICP can be used to estimate the part of protein that is not available for digestion in the small intestine. There was also a correlation between NDSCP and pre-caecal digestible protein. The slope of the linear regression line between NDICP and pre-caecal digestible CP was 0.9, suggesting an APCD of NDSCP of 90 %. Thus pre-caecal digestible CP may be predicted by multiplying NDSCP by 0.9. Because the literature identifies a similar AA profile in NDICP and NDSCP within a given feed the presented concept may preliminarily be transferred to AA. The proposed system can at any time be adapted to the scientific progress without altering its structure. Such adaptations would be necessary particularly when new knowledge exist on the distribution of AA onto NDICP/NDSCP, the APCD of individual AA from NDSCP, and the impact of feed processing and chewing on particle sizes and protein digestibility

    Cassava root peel as a replacement for maize in diets for growing pigs: effects on energy and nutrient digestibility, performance and carcass characteristics

    Get PDF
    Two experiments were conducted to evaluate cassava root peel (CRP) as diet component for fattening pigs. In the first experiment, ten male pigs were used to investigate the nutrient digestibility and the nutritive value of CRP as replacement for maize in the diet at 0 %, 30 %, 40 %, 50 % and 60 %, while supplementing free amino acids (fAA). During two experimental periods, faeces were quantitatively collected and analysed for chemical composition. In the second experiment, 40 pigs received the same diets as in Experiment 1, and daily feed intake and weekly weight changes were recorded. Four pigs per diet were slaughtered at 70 kg body weight to evaluate carcass traits. Digestibility of dry and organic matter, crude protein, acid detergent fibre and gross energy were depressed (p0.05) at 60 % CRP; digestible energy content (MJ kg^(−1) DM) was 15.4 at 0 % CRP and 12.7 at 60 % CRP. In the second experiment, CRP inclusion had only a small impact on feed intake, weight gain and feed conversion ratio (p0.05) as well as on the length of the small intestine and the Longissimus dorsi muscle area. The missing correlation of daily weight gain and feed-to-gain ratio up to a CRP inclusion of 40 % indicates that negative effects of CRP on pig growth can be avoided by respecting upper feeding limits. Hence, a combined use of CRP and fAA can reduce feeding costs for small-scale pig farmers in countries where this crop-by product is available in large amounts

    A new protein evaluation system for horse feed from literature data

    Get PDF
    Few data on apparent pre-caecal digestibility (APCD) of crude protein (CP) and particularly amino acids (AA) are available from studies with horses. Protein bound in cell walls (i.e. neutral detergent insoluble CP (NDICP)) is unlikely to be decomposed by digestive enzymes in the small intestine. In contrast the corresponding analytical fraction of neutral detergent soluble CP (NDSCP) (NDSCP = CP-NDICP) is likely to be available for auto-enzymatic digestion. A literature analysis on the relationship between NDICP/NDSCP and pre-caecal indigestible/digestible CP was carried out. There was a strong positive relationship between NDICP and pre-caecal indigestible CP, which suggests that NDICP can be used to estimate the part of protein that is not available for digestion in the small intestine. There was also a correlation between NDSCP and pre-caecal digestible protein. The slope of the linear regression line between NDICP and pre-caecal digestible CP was 0.9, suggesting an APCD of NDSCP of 90 %. Thus pre-caecal digestible CP may be predicted by multiplying NDSCP by 0.9. Because the literature identifies a similar AA profile in NDICP and NDSCP within a given feed the presented concept may preliminarily be transferred to AA. The proposed system can at any time be adapted to the scientific progress without altering its structure. Such adaptations would be necessary particularly when new knowledge exist on the distribution of AA onto NDICP/NDSCP, the APCD of individual AA from NDSCP, and the impact of feed processing and chewing on particle sizes and protein digestibility

    Structural Features of Condensed Tannins Influence Their Antimethanogenic Potential in Forage Plants

    Get PDF
    Despite years of research on the antimethanogenic potential of condensed tannins (CT), their large-scale application is inhibited by a substantial variability in previous studies with regards to their impact on ruminant nutrition. This variability mainly results from the complexity of CT structures, and their impact on methane emissions is often unaccounted for. Hence, this study (a) evaluated the variability in antimethanogenic potential across six forage species, (b) linked methane emissions to tannin activity, and (c) determined the impact of CT structural features on methane abatement. Six forage species were grown in a greenhouse under controlled environmental conditions, namely, sainfoin (Onobrychis viciifolia), birdsfoot trefoil (Lotus corniculatus), big trefoil (Lotus pedunculatus), plantain (Plantaga lanceolata), sulla (Hedysarum coronarium) and lucerne (Medicago sativa). The plants were harvested at the flowering stage and leaf samples were analysed for chemical composition, condensed tannin concentration and structural features, before being incubated in rumen fluid for 24 hours. Lucerne was used as negative control (without tannins) and an additional polyethylene glycol (PEG) treatment was included, to inactivate tannins and link any effect on fermentation characteristics to tannin activity only. A strong variability across the species (P\u3c 0.0001) was observed on methane emissions. Sulla had the highest antimethanogenic potential and decreased methane emissions by 47% compared to lucerne. All species rich in CTs decreased both methane and total gas production, yet the PEG treatment did not alter the methane proportion in the total gas produced. In addition to CT concentration (R= -0.78), methane emissions were found to be negatively correlated with the CT structural features, prodelphinidin percentage (R= -0.6) and mean degree of polymerisation (R= -0.57). This study demonstrated that antimethanogenic potential of forages depends on CT concentration as well as on structural features and incorporating them in the studies can efficiently assess their impact on ruminant nutrition

    Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric CH\u3csub\u3e4\u3c/sub\u3e Emissions

    Get PDF
    Enteric methane (CH4) is a main source of agriculture-related greenhouse gasses. Conversely, pasture is increasingly demanded by customers due to both perceived and real benefits regarding animal welfare, environmental aspects and product quality. However, if implemented poorly, CH4 emissions can increase, thus contributing to climate change. One promising option to reduce enteric CH4 emissions are plant specialized metabolites (PSM), and particularly tannins. Consequently, we conducted two complementary experiments to determine to what extent enteric CH4 emissions can be reduced, and how this affects milk yields: a) an in vivo experiment with grazing Jersey cows, where CH4 emissions were quantified using the SF6 tracer technique, and b) an in vitro experiment using the Hohenheim gas test. In the in vivo experiment, a binary mixture consisting of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) was compared against a diverse mixture consisting of eight species, including birdsfoot trefoil (Lotus corniculatus), and salad burnet (Sanguisorba minor). In the in vitro experiment, the eight species from the in vivo experiment were combined in binary mixtures with perennial ryegrass in increasing proportions, to determine the mitigation potential of each species. Results show an increase in milk yield for the diverse mixture, although this is also accompanied by higher CH4 emissions. Nevertheless, these emissions are lower across both mixtures, when compared with similar trials. This is probably due to a very high digestibility of the ingested forage. With the in vitro experiment, we were able to confirm a substantial potential for CH4 reduction when including species rich in PSM. However, those forbs with the higher anti-methanogenic potential were only present in minor proportions in the pasture. Hence, further research will be required on how to increase the share of the bioactive species with lower competitiveness and confirm their potential in vivo

    Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

    Get PDF
    An in vitro Hohenheim gas test was conducted to analyze the fermentation end-products from 17 cultivars of eight polyphenol containing forage species. The polyphenol composition and proanthocyanidin (PA) structural features of all the cultivars were analyzed with UPLC-MS/MS in leaves of vegetative or generative plants. The samples were incubated with and without polyethylene glycol (PEG, a tannin-binding agent) to separate the tannin-effect on methane (CH4, ml/200 mg DM) production from that of forage quality. Sulla and big trefoil, two particularly PA rich species, were found to have the highest CH4 reduction potential of up to 47% when compared to the samples without PEG. However, concomitant reduction in gas production (GP, ml/200 mg DM) of up to 44% was also observed. An increase in both GP and CH4 production under PEG treatments, confirms the role of tannins in CH4 reduction. Moreover, PA structural features and concentration were found to be an important source of variation for CH4 production from PA containing species. Despite having low polyphenol concentrations, chicory and plantain were found to reduce CH4 production without reducing GP. Additionally, interspecies variability was found to be higher than intraspecies variability, and these results were consistent across growth stages, indicating the findings' representativeness

    Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric Methane Emissions In Vitro

    Get PDF
    Methane emissions from ruminants are a major contributor to agricultural greenhouse gas emissions. Thus, eight different forage species were combined in binary mixtures with Lolium perenne in increasing proportions, in vitro, to determine their methane reduction potential in ruminants. Species were sampled in two consecutive years where possible. The aims were: a) to determine if mixtures with specific forages, particularly those rich in plant specialized metabolites (PSM), can reduce methane emissions compared to ryegrass monocultures, b) to identify whether there is a linear-dose effect relationship in methane emissions from the legume or herb addition, and c) whether these effects are maintained across sampling years. Results showed that all dicot species studied, including the non-tannin-containing species, reduced methane production. The tannin-rich species, Sanguisorba minor and Lotus pedunculatus, showed the greatest methane reduction potential of up to 33%. Due to concomitant reductions in the forage digestibility, Cichorium intybus yielded the lowest methane emissions per digestible forage unit. Contrary to total gas production, methane production was less predictable, with a tendency for the lowest methane production being obtained with a 67.5% share of the legume or herb partner species. Thus, linear increments in the partner species share did not result in linear changes in methane concentration. The methane reduction potential differed across sampling years, but the species ranking in methane concentration was stable
    • 

    corecore