23 research outputs found

    Using hydrogeochemical and ecohydrologic responses to understand epikarst process in semi-arid systems, Edwards plateau, Texas, USA

    Get PDF
    The epikarst is a permeable boundary between surface and subsurface environments and can be conceptualized as the vadose critical zone of epigenic karst systems which have not developed under insoluble cover. From a hydrologic perspective, this boundary is often thought of as being permeable in one direction only (down), but connectivity between the flow paths of water through the epikarst and the root systems of woody plants means that water moves both up and down across the epikarst. However, the dynamics of these flows are complex and highly dependent on variability in the spatial structure of the epikarst, vegetation characteristics, as well as temporal variability in precipitation and evaporative demand. Here we summarize insights gained from working at several sites on the Edwards Plateau of Central Texas, combining isotopic, hydrogeochemical, and ecophysiological methodologies. 1) Dense woodland vegetation at sites with thin to absent soils (0-30 cm) is in part supported by water uptake from the epikarst. 2) However, tree transpiration typically becomes water-limited in dry summers, suggesting that the plant-available fraction of stored water in the epikarst depletes quickly, even when sustained cave drip rates indicate that water is still present in the epikarst. 3) Flow paths for water that feeds cave drips become rapidly disconnected from the evaporation zone of the epikarst and out of reach for plant roots. 4) Deep infiltration and recharge does not occur in these systems without heavy or continuous precipitation that exceeds some threshold value. Thresholds are strongly correlated with antecedent potential evapotranspiration and rainfall, suggesting control by the moisture status of the epikarst evapotranspiration zone. The epikarst and unsaturated zone in this region can be conceptualized as a variably saturated system with storage in fractures, matrix porosity, and in shallow perched aquifers, most of which is inaccessible to the root systems of trees, although woody vegetation may control recharge thresholds.Keywords: hydraulic disconnection, precipitation thresholds, root zone, plant water use, recharge, epikarst storage, barometric pressure.DOI: 10.3986/ac.v42i2-3.67

    Population Dynamic Consequences of Competitive Symmetry in Annual Plants

    No full text
    Asymmetric competition is a form of resource division among plants, in which large plants greatly suppress the growth of smaller neighbors. In annual plants, small size differences between seedlings at the onset of competition are magnified into large differences in seed-set by asymmetric competition. We formulate a novel neighborhood model, which reflects this seedling size effect as modified by the type of competitive symmetry. In the model, competition type is represented by a single, biologically meaningful parameter. We implement the model in a population growth model for two species, one at low density (the invader), and one at high density (the resident). The species are the same, except for their seedling biomass distributions. Under these conditions, we find that asymmetric competition always favors invasion by the species with lager average seedling size, but impairs invasion by the other species. Based on this invasibility criterion, we conclude that asymmetric competition always favors competitive exclusion in our model. However, by modifying some of the model assumptions, we suggest scenarios in which asymmetric competition may promote coexistence

    Water use in arid land ecosystems

    No full text

    Using Hydrogeochemical and Ecohydrologic Responses to Understand Epikarst Process in Semi-arid Systems, Edwards Plateau, Texas, USA

    No full text
    The epikarst is a permeable boundary between surface and subsurface environments and can be conceptualized as the vadose critical zone of epigenic karst systems which have not developed under insoluble cover. From a hydrologic perspective, this boundary is often thought of as being permeable in one direction only (down), but connectivity between the flow paths of water through the epikarst and the root systems of woody plants means that water moves both up and down across the epikarst. However, the dynamics of these flows are complex and highly dependent on variability in the spatial structure of the epikarst, vegetation characteristics, as well as temporal variability in precipitation and evaporative demand. Here we summarize insights gained from working at several sites on the Edwards Plateau of Central Texas, combining isotopic, hydrogeochemical, and ecophysiological methodologies. 1) Dense woodland vegetation at sites with thin to absent soils (0-30 cm) is in part supported by water uptake from the epikarst. 2) However, tree transpiration typically becomes water-limited in dry summers, suggesting that the plant-available fraction of stored water in the epikarst depletes quickly, even when sustained cave drip rates indicate that water is still present in the epikarst. 3) Flow paths for water that feeds cave drips become rapidly disconnected from the evaporation zone of the epikarst and out of reach for plant roots. 4) Deep infiltration and recharge does not occur in these systems without heavy or continuous precipitation that exceeds some threshold value. Thresholds are strongly correlated with antecedent potential evapotranspiration and rainfall, suggesting control by the moisture status of the epikarst evapotranspiration zone. The epikarst and unsaturated zone in this region can be conceptualized as a variably saturated system with storage in fractures, matrix porosity, and in shallow perched aquifers, most of which is inaccessible to the root systems of trees, although woody vegetation may control recharge thresholds

    Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: effects on soil water and plant water uptake

    No full text
    We investigated the effects of winter and summer drought on plants of the Colorado Plateau in western North America. This winter-cold, summer-hot desert region receives both winter and summer precipitation. Droughts were imposed for two consecutive years using rainout shelters. Here, we examine drought effects on the hydrologic interactions between plants and soil. We chose three perennial species for this study, representing different rooting patterns and responsiveness to precipitation pulses: Oryzopsis hymenoides, a perennial bunch grass with shallow roots; Gutierrezia sarothrae, a subshrub with dimorphic roots; and Ceratoides lanata, a predominantly deep-rooted woody shrub. Drought effects on plant water status were qualitatively similar among species, despite morphological differences. Summer drought affected the water status of all species more negatively than winter drought. Isotopic analysis of stem water revealed that all three species took up deeper soil water under drought conditions and shallow soil water after a large rainfall event in summer. Thus all three species appeared to use the same water sources most of the time. However, after a particularly dry summer, only the deepest-rooted species continued to take up soil water, while the more shallow-rooted species were either dead or dormant. Our study suggests therefore that increased occurrence of summer drought could favor the most deep-rooted species in ecosystem

    Dominant cold desert plants do not partition warm season precipitation by event size

    No full text
    We conducted experiments to examine the quantitative relationships between rainfall event size and rainwater uptake and use by four common native plant species of the Colorado Plateau, including two perennial grasses, Hilaria jamesii (C4) and Oryzopsis hymenoides (C3), and two shrubs, Ceratoides lanata (C3), and Gutierrezia sarothrae (C3). Specifically, we tested the hypothesis that grasses use small rainfall events more efficiently than shrubs and lose this advantage when events are large. Rainfall events between 2 and 20 mm were simulated in spring and summer by applying pulses of deuterium-labeled irrigation water. Afterwards, pulse water fractions in stems and the rates of leaf gas exchange were monitored for 9 days. Cumulative pulse water uptake over this interval (estimated by integrating the product of pulse fraction in stem water and daytime transpiration rate over time) was approximately linearly related to the amount of pulse water added to the ground in all four species. Across species, consistently more pulse water was taken up in summer than in spring. Relative to their leaf areas, the two grass species took up more pulse water than the two shrub species, across all event sizes and in both seasons, thus refuting the initial hypothesis. In spring, pulse water uptake did not significantly increase photosynthetic rates and in summer, pulse water uptake had similar, but relatively small effects on the photosynthetic rates of the three C3 plants, and a larger effect on the C4 plant H. jamesii. Based on these data, we introduce an alternative hypothesis for the responses of plant functional types to rainfall events of different sizes, building on cost-benefit considerations for active physiological responses to sudden, unpredictable changes in water availability

    270817.qxd

    No full text
    Abstract We contrasted the seasonal use of simulated large rain events (24 mm) by three native species of the arid Colorado Plateau: the perennial grass Hilaria jamesii and two shrubs Artemesia filifolia and Coleogyne ramosissima. Deuterium-enriched water was used to distinguish shallow "pulse" water from water in deeper soil layers that were unaffected by the water input. We also measured the leaf gas exchange rates of watered and unwatered control plants for 5 days after the rain event. H. jamesii had twice the pulse water proportion in its xylem than the two shrubs in spring (approx. 70% vs 35%). In summer, the pulse water proportions of all species were around 70%. The increase in the relative pulse water uptake of the two shrubs was caused primarily by a reduction in the rate of water uptake from deeper sources, consistent with the decrease in the availability of stored winter water. Rain increased the rates of gas exchange in C. ramosissima in both seasons, in H. jamesii only in summer and had no significant effect on A. filifolia. In H. jamesii, summer rain also increased water use efficiency. This suggests three principle mechanisms for rainwater use: (1) immediate increase in gas exchange via stomatal opening (C. ramisissima), (2) immediate increase in water use efficiency through restoration of the photosynthetic apparatus (H. jamesii) and (3) conservation of deeper soil water, potentially extending photosynthetic activity into later drought periods (A. filifolia). On a ground-area basis, A. filifolia was by far the largest consumer of spring and summer rain, due to its greater ground cover, while rain use by H. jamesii was negligible. We hypothesize that a population's fraction of the total community Leaf Area Index, more than species identity, determines which species takes up most of the spring and summer precipitation and we discuss this idea in the context o

    270817.qxd

    No full text
    Abstract We contrasted the seasonal use of simulated large rain events (24 mm) by three native species of the arid Colorado Plateau: the perennial grass Hilaria jamesii and two shrubs Artemesia filifolia and Coleogyne ramosissima. Deuterium-enriched water was used to distinguish shallow "pulse" water from water in deeper soil layers that were unaffected by the water input. We also measured the leaf gas exchange rates of watered and unwatered control plants for 5 days after the rain event. H. jamesii had twice the pulse water proportion in its xylem than the two shrubs in spring (approx. 70% vs 35%). In summer, the pulse water proportions of all species were around 70%. The increase in the relative pulse water uptake of the two shrubs was caused primarily by a reduction in the rate of water uptake from deeper sources, consistent with the decrease in the availability of stored winter water. Rain increased the rates of gas exchange in C. ramosissima in both seasons, in H. jamesii only in summer and had no significant effect on A. filifolia. In H. jamesii, summer rain also increased water use efficiency. This suggests three principle mechanisms for rainwater use: (1) immediate increase in gas exchange via stomatal opening (C. ramisissima), (2) immediate increase in water use efficiency through restoration of the photosynthetic apparatus (H. jamesii) and (3) conservation of deeper soil water, potentially extending photosynthetic activity into later drought periods (A. filifolia). On a ground-area basis, A. filifolia was by far the largest consumer of spring and summer rain, due to its greater ground cover, while rain use by H. jamesii was negligible. We hypothesize that a population's fraction of the total community Leaf Area Index, more than species identity, determines which species takes up most of the spring and summer precipitation and we discuss this idea in the context o
    corecore