38 research outputs found

    Herpesvirus saimiri-induced proteins in lytically infected cells. I. Time-ordered synthesis

    Get PDF
    The addition of TPA (phorbol-12-myristate-13-acetate) to cultures during the lytic infection with herpesvirus saimiri led to an enhanced and accelerated production of polypeptides induced by H. saimiri and to a rapid shut-down of host cell protein synthesis and allowed a detailed analysis of the protein patterns. Analysis of sequential protein synthesis in owl monkey kidney cells lytically infected with H. saimiri 11 permitted the identification of 31 virus-induced polypeptides. The use of the amino acid analogues canavanine (for arginine) and azetidine (for proline) in parallel allowed experiments on the identification of proteins synthesized early and late during lytic infection

    Impact of Parvovirus B19 viraemia in Liver Transplanted Children on Anemia: a Retrospective Study

    Get PDF
    Acute parvovirus B19 (B19V) infection in immunocompromised patients may lead to severe anemia. However, in adult transplant recipients, B19V reactivations without anemia and low-level viremia are common. The impact of B19V in pediatric transplant patients, with high risk of primary infection, is investigated here. In a six-month period, 159 blood samples of 54 pediatric liver transplant recipients were tested for B19V DNA by quantitative real-time PCR. Viremia was correlated with anemia and immunosuppression and compared with rates in adult transplant recipients. B19V DNA was detected in 5/54 patients. Primary B19V infections were observed in four patients prior to and in one patient after transplantation. Rates of viremia were significantly higher in pediatric recipients than in adults. Prolonged virus shedding after primary infection prior to transplantation accounts for most viremic cases. Anemia was significantly more frequent in samples from viremic patients, but remained mild. In 15% of anemic samples, B19V DNA was detected. Therefore, in anemic pediatric transplant recipients, diagnostics for B19V seem reasonable

    Immunological reactivity of a human immunodeficiency virus type I derived peptide representing a consensus sequence of the GP120 major neutralizing region V3

    Get PDF
    To reduce the opportunities for human immunodeficiency virus type 1 (HIV-1) to evade vaccine induced immunity, the development of subunit vaccines must focus on the characterization of immunogenic epitopes, which are major targets for the immune system. The most dominant site for elicitation of neutralising immune response is located on the external envelope glycoprotein gp120 within the third variable domain (V3). To overcome virus type specificity of antibodies directed to the V3-domain we designed a 36 amino acids long gp120/V3-consensus peptide (V3-C36) based on published biological data and sequence comparisons of various HIV-1 virus isolates. This peptide contains a conserved core sequence which is suggested to form a surface-exposed beta-turn. This peptide also includes T-cell epitopes defined in mice and humans, an ADCC-epitope and two highly conserved cysteine residues which were oxidized to form a cystine derivate, thus allowing correct peptide folding. In ELISA-tests, this peptide reacts with at least 90% of randomly selected sera of European and African patients infected with HIV-1 and is recognized by three different HIV-1/V3 "type-specific" antisera (MN, RF, IIIB-strain). Using this peptide as immunogen in rabbits, antisera could be raised with highly cross-reactive and HIV-1/IIIB strain neutralizing properties. Moreover, HTLV/HIV-1/IIIB specific cytotoxic T-lymphocytes (CTLs) of BALB/c mice infected with a gp120 recombinant vaccinia virus recognized the central 16- and 12-mer peptides of the V3-C36 consensus peptide in cytolytic assays, indicating perfect compatibility of the consensus peptide with the IIIB-primed CTLs. The DNA-sequence encoding the V3-consensus loop region might be an important component in newly designed recombinant subunit vaccines. In addition, due to its broad serological reactivity, the V3-consensus peptide might play an important role in special diagnostic purposes

    Intravenous immunoglobulin treatment of four patients with juvenile polyarticular arthritis associated with persistent parvovirus B19 infection and antiphospholipid antibodies

    Get PDF
    Children with rheumatic oligoarthritis and polyarthritis frequently establish persistent parvovirus B19 infections that may be associated with the production of antiphospholipid antibodies (anti-PL IgG). In this study we analysed the influence of high-dose intravenous immunoglobulin (IVIG) therapy on virus load, on the level of anti-PL IgG and its potential capacity to improve the patients' clinical status. Four juvenile patients with long-lasting polyarticular rheumatic diseases and persistent parvovirus B19 infection, associated in three cases with the presence of antibodies against β(2)-glycoprotein I (anti-β(2)GPI IgG), were treated with two cycles of IVIG on five successive days (0.4 g/kg per day). Clinical parameters including scores of disease activity, virus load and anti-PL IgG levels were determined before, during and after treatment. Two patients showed a complete remission that has lasted 15 months. During that period they showed neither clinical nor laboratory signs of inflammation. Viral DNA was not detectable in serum, and a decrease in anti-β(2)GPI IgG was observed. As assessed by the Childhood Health Assessment Questionnaire and the Health-related Quality of Life Questionnaire for Children, both patients were no longer restricted in their activities of daily living and no impact on the health-related quality of life was observed. In one patient the therapy failed: there was no improvement of symptoms and no decrease in virus load or inflammatory parameters. In the fourth patient, clinical and laboratory parameters did not improve despite a decrease in both viral load and anti-PL IgG. Our results show that the use of IVIG to treat parvovirus B19-triggered polyarticular rheumatic disease of childhood might offer an opportunity to improve this disabling condition

    Identification of a protein encoded in the EB-viral open reading frame BMRF2

    Get PDF
    Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells

    Carrier-bound synthetic peptides. Use as antigen in HIV-1 ELISA tests and in antiserum production

    Get PDF
    Chemically synthesize carrier-bound peptides have been used as antigens in diagnostic test systems (ELISA) and for raising antipeptide-specific antisera. The method does not require prior cleavage of the peptides from the support used for the solid-phase synthesis. Using the same resin for both the synthesis and the subsequent applications it was possible to avoid expensive and time-consuming purification procedures and artificial recoupling to solid supports. A quick and specific ELISA-based diagnostic test system for HIV-specific antipeptide antibodies in human sera was established. In addition the carrier-bound peptides were shown to be potent antigens for raising antibodies in animals

    Induction of cytolytic T lymphocytes directed towards the V3 loop of the human immunodeficiency virus type 1 external glycoprotein gp120 by p55gag/V3 chimeric vaccinia viruses

    Get PDF
    T cell-mediated cytotoxicity may play an important role in controlling infection by human immunodeficiency virus (HIV). In order to study the ability of rationally designed antigens to induce cytolytic T lymphocytes (CTLs) we replaced stretches of 30 to 50 amino acids at the p17-MA/p24-CA cleavage site, within the p24-CA moiety and within the p6-LI portion of the HIV type 1 p55gag precursor by the third variable domain (V3) of the external glycoprotein gp120. This site is known to be a target for CTL attack in mice and humans. The chimeric antigens were recombined into highly attenuated vaccinia viruses in order to investigate class I major histocompatibility complex (MHC)-restricted presentation of antigenic V3 peptides. Immunoprecipitation and Western blot analysis of the group-specific antigen (p55gag)/V3 chimeric proteins demonstrated significant differences in the accessibility of the V3 domain for a monoclonal antibody or polyclonal V3-specific antisera, depending on the position of the V3 loop within the p55gag carrier protein. Immunization of BALB/c mice with three variants of p55gag/V3 recombinant vaccinia virus, however, resulted in a comparable priming of CD4-CD8+ CTLs in vivo irrelevant of the position of the V3 loop within p55gag. Local conformational changes, including the V3 domain within the p55gag/V3 chimeras, did not demonstrate a significant effect on V3-specific lysis of the target cells when compared to the authentic gp120 envelope protein. Class I MHC-restricted CTLs induced by a V3 consensus sequence cross-reacted perfectly with the LAI strain-derived V3 loop sequence. These data indicate that the combination of selected epitopes (V3) with immunologically relevant complex carrier proteins (p55gag) can be accomplished without the loss of biological activity

    Characterization of Herpesvirus saimiri and Herpesvirus ateles structural proteins

    Get PDF
    The structural proteins of Herpesvirus saimiri strains 11 and 11 att and of Herpesvirus ateles strains 73 and 810 were characterized by electrophoresis in SDS-polyacrylamide gels. For H. saimiri 21 virus structural proteins could be identified with molecular weights ranging from 28,000 to 210,000 Da. For H. ateles 810 and H. ateles 73, 20 polypeptides were characterized. Using lactoperoxidase for iodination of surface proteins and immunoprecipitation, 5 polypeptides could be identified as envelope and 4 as capsid surface proteins
    corecore