301 research outputs found

    Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking.

    Get PDF
    Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder

    Limitations of MTT and MTS-Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols

    Get PDF
    The chemopreventive effect of green tea polyphenols, such as (-)-epigallocatechin-3-gallate (EGCG), has been well demonstrated in cell culture studies. However, a wide range of IC(50) concentrations has been observed in published studies of the anti-proliferative activity of EGCG from different laboratories. Although the susceptibility to EGCG treatment is largely dependent on cancer cell type, the particular cell viability and proliferation assays utilized may significantly influence quantitative results reported in the literature.We compared five widely used methods to measure cell proliferation and viability after EGCG treatment using LNCaP prostate cancer cells and MCF-7 breast cancer cells. Both methods using dyes to quantify adenosine triphosphate (ATP) and deoxynucleic acid (DNA) showed accuracy in the measurement of viable cells when compared to trypan blue assay and results showed good linear correlation (r = 0.95). However, the use of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) as indicators of metabolically active mitochondria overestimated the number of viable cells by comparison with the ATP, DNA, or trypan blue determinations. As a result, the observed IC(50) concentration of EGCG was 2-fold higher using MTT and MTS compared to dyes quantifying ATP and DNA. In contrast, when cells were treated with apigenin MTT and MTS assays showed consistent results with ATP, DNA, or trypan blue assays.These results demonstrate that MTT and MTS -based assays will provide an underestimation of the anti-proliferative effect of EGCG, and suggest the importance of careful evaluation of the method for in vitro assessment of cell viability and proliferation depending on the chemical nature of botanical supplements

    Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human exercise capacity declines with advancing age. These changes often result in loss of physical fitness and more rapid senescence. Nitric oxide (NO) has been implicated in improvement of exercise capacity through vascular smooth muscle relaxation in both coronary and skeletal muscle arteries, as well as via independent mechanisms. Antioxidants may prevent nitric oxide inactivation by oxygen free radicals. The purpose of this study was to investigate the effects of an L-arginine and antioxidant supplement on exercise performance in elderly male cyclists.</p> <p>Methods</p> <p>This was a two-arm prospectively randomized double-blinded and placebo-controlled trial. Sixteen male cyclists were randomized to receive either a proprietary supplement (Niteworks<sup>®</sup>, Herbalife International Inc., Century City, CA) or a placebo powder. Exercise parameters were assessed by maximal incremental exercise testing performed on a stationary cycle ergometer using breath-by-breath analysis at baseline, week one and week three.</p> <p>Results</p> <p>There was no difference between baseline exercise parameters. In the supplemented group, anaerobic threshold increased by 16.7% (2.38 ± 0.18 L/min, p < 0.01) at week 1, and the effect was sustained by week 3 with a 14.2% (2.33 ± 0.44 L/min, p < 0.01). In the control group, there was no change in anaerobic threshold at weeks 1 and 3 compared to baseline (1.88 ± 0.20 L/min at week 1, and 1.86 ± 0.21 L/min at week 3). The anaerobic threshold for the supplement groups was significantly higher than that of placebo group at week 1 and week 3. There were no significant changes noted in VO<sub>2 </sub>max between control and intervention groups at either week 1 or week 3 by comparison to baseline.</p> <p>Conclusion</p> <p>An arginine and antioxidant-containing supplement increased the anaerobic threshold at both week one and week three in elderly cyclists. No effect on VO<sub>2 </sub>max was observed. This study indicated a potential role of L-arginine and antioxidant supplementation in improving exercise performance in elderly.</p

    The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain

    Get PDF
    Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral herpesviralmutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17(+)) Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment

    Raver2, a new member of the hnRNP family

    Get PDF
    AbstractRaver2 was identified as a novel member of the hnRNP family based on sequence homology within three RNA recognition motifs and its general domain organization reminiscent of the previously described raver1 protein. Like raver1, raver2 contains two putative nuclear localization signals and a potential nuclear export sequence, and also displays nucleo-cytoplasmic shuttling in a heterokaryon assay. In glia cells and neurons, raver2 localizes to the nucleus. Moreover, the protein interacts with polypyrimidine tract binding protein (PTB) suggesting that it may participate in PTB-mediated nuclear functions. In contrast to ubiquitously expressed raver1, raver2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is essentially restricted to brain, lung, and kidney in the adult mouse

    Metabolic syndrome and subsequent risk of type 2 diabetes and cardiovascular disease in elderly women:Challenging the current definition

    Get PDF
    The prognostic value of the metabolic syndrome (MetS) is believed to vary with age. With an elderly population expecting to triple by 2060, it is important to evaluate the validity of MetS in this age group. We examined the association of MetS risk factors with later risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD) in elderly Caucasian women. We further investigated if stratification of individuals not defined with MetS would add predictive power in defining future disease prevalence of individuals with MetS. The Prospective Epidemiological Risk Factor Study, a community-based cohort study, followed 3905 Danish women since 2000 (age: 70.1 ± 6.5) with no previous diagnosis of T2DM or CVD, holding all measurements used for MetS definition; central obesity, hypertension, hyperlipidemia, and hyperglycemia combined with register-based follow-up information. Elderly women with defined MetS presented a 6.3-fold increased risk of T2DM (95% confidence interval: [3.74–10.50]) and 1.7-fold increased risk of CVD (1.44–2.05) compared to women with no MetS risk factors. Subdividing the control group without defined MetS revealed that both centrally obese controls and controls holding other MetS risk factors also had increased risk of T2DM (hazard ratio (HR) = 2.21 [1.25–3.93] and HR = 1.75 [1.04–2.96]) and CVD (HR = 1.51 [1.25–1.83] and HR = 1.36 [1.15–1.60]) when compared to controls with no MetS risk factors. MetS in elderly Caucasian women increased risk of future T2DM and CVD. While not defined with MetS, women holding only some risk factors for MetS were also at increased risk of T2DM or CVD compared to women with no MetS risk factors

    Plasma osteoprotegerin is related to carotid and peripheral arterial disease, but not to myocardial ischemia in type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease (CVD) is frequent in type 2 diabetes mellitus patients due to accelerated atherosclerosis. Plasma osteoprotegerin (OPG) has evolved as a biomarker for CVD. We examined the relationship between plasma OPG levels and different CVD manifestations in type 2 diabetes.</p> <p>Methods</p> <p>Type 2 diabetes patients without known CVD referred consecutively to a diabetes clinic for the first time (n = 305, aged: 58.6 ± 11.3 years, diabetes duration: 4.5 ± 5.3 years) were screened for carotid arterial disease, peripheral arterial disease, and myocardial ischemia by means of carotid artery ultrasonography, peripheral ankle and toe systolic blood pressure measurements, and myocardial perfusion scintigraphy (MPS). In addition, plasma OPG concentrations and other CVD-related markers were measured.</p> <p>Results</p> <p>The prevalence of carotid arterial disease, peripheral arterial disease, and myocardial ischemia was 42%, 15%, and 30%, respectively. Plasma OPG was significantly increased in patients with carotid and peripheral arterial disease compared to patients without (p < 0.001, respectively), however, this was not the case for patients with myocardial ischemia versus those without (p = 0.71). When adjusted for age, HbA1c and U-albumin creatinine ratio in a multivariate logistic regression analysis, plasma OPG remained strongly associated with carotid arterial disease (adjusted OR: 2.12; 95% CI: 1.22-3.67; p = 0.008), but not with peripheral arterial disease or myocardial ischemia.</p> <p>Conclusions</p> <p>Increased plasma OPG concentration is associated with carotid and peripheral arterial disease in patients with type 2 diabetes, whereas no relation is observed with respect to myocardial ischemia on MPS. The reason for this discrepancy is unknown.</p> <p>Trial registration number</p> <p>at <url>http://www.clinicaltrial.gov</url>: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00298844">NCT00298844</a></p

    Effect of dietary omega-3 fatty acids on castrate-resistant prostate cancer and tumor-associated macrophages.

    Get PDF
    BackgroundM2-like macrophages are associated with the pathogenesis of castrate-resistant prostate cancer (CRPC). We sought to determine if dietary omega-3 fatty acids (ω-3 FAs) delay the development and progression of CRPC and inhibit tumor-associated M2-like macrophages.MethodsMycCap cells were grown subcutaneously in immunocompetent FVB mice. Mice were castrated when tumors reached 300 mm2. To study effects of dietary ω-3 FAs on development of CRPC, ω-3 or ω-6 diets were started 2 days after castration and mice sacrificed after early regrowth of tumors. To study ω-3 FA effects on progression of CRPC, tumors were allowed to regrow after castration before starting the diets. M2 (CD206+) macrophages were isolated from allografts to examine ω-3 FA effects on macrophage function. Omega-3 fatty acid effects on androgen-deprived RAW264.7 M2 macrophages were studied by RT-qPCR and a migration/ invasion assay.ResultsThe ω-3 diet combined with castration lead to greater MycCap tumor regression (tumor volume reduction: 182.2 ± 33.6 mm3) than the ω-6 diet (tumor volume reduction: 148.3 ± 35.2; p = 0.003) and significantly delayed the time to CRPC (p = 0.006). Likewise, the ω-3 diet significantly delayed progression of established castrate-resistant MycCaP tumors (p = 0.003). The ω-3 diet (as compared to the ω-6 diet) significantly reduced tumor-associated M2-like macrophage expression of CSF-1R in the CRPC development model, and matrix metallopeptidase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in the CRPC progression model. Migration of androgen-depleted RAW264.7 M2 macrophages towards MycCaP cells was reversed by addition of docosahexaenoic acid (ω-3).ConclusionsDietary omega-3 FAs (as compared to omega-6 FAs) decreased the development and progression of CRPC in an immunocompetent mouse model, and had inhibitory effects on M2-like macrophage function. Clinical trials are warranted evaluating if a fish oil-based diet can delay the time to castration resistance in men on androgen deprivation therapy, whereas further preclinical studies are warranted evaluating fish oil for more advanced CRPC
    corecore