20 research outputs found

    Dynamic Nuclear Polarization of 1H, 13C, and 59Co in a Tris(ethylenediamine)cobalt(III) Crystalline Lattice Doped with Cr(III)

    Get PDF
    The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)[subscript 3]Cl[subscript 3]][subscript 2]·NaCl·6H[subscript 2]O (en = ethylenediamine, C[subscript 2]H[subscript 8]N[subscript 2]) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that [superscript 1]H, [superscript 13]C, and [superscript 59]Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins.National Institutes of Health (U.S.) (EB00280)National Institutes of Health (U.S.) (EB002026)German Science Foundation (DFG Research Fellowship CO 802/1-1)Natural Sciences and Engineering Research Council of Canada (Banting Postdoctoral Fellowship)European Molecular Biology Organization (ASTF-491/2013

    Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression

    Get PDF
    Importance Diverse models have been developed to predict psychosis in patients with clinical high-risk (CHR) states. Whether prediction can be improved by efficiently combining clinical and biological models and by broadening the risk spectrum to young patients with depressive syndromes remains unclear. Objectives To evaluate whether psychosis transition can be predicted in patients with CHR or recent-onset depression (ROD) using multimodal machine learning that optimally integrates clinical and neurocognitive data, structural magnetic resonance imaging (sMRI), and polygenic risk scores (PRS) for schizophrenia; to assess models' geographic generalizability; to test and integrate clinicians' predictions; and to maximize clinical utility by building a sequential prognostic system. Design, Setting, and Participants This multisite, longitudinal prognostic study performed in 7 academic early recognition services in 5 European countries followed up patients with CHR syndromes or ROD and healthy volunteers. The referred sample of 167 patients with CHR syndromes and 167 with ROD was recruited from February 1, 2014, to May 31, 2017, of whom 26 (23 with CHR syndromes and 3 with ROD) developed psychosis. Patients with 18-month follow-up (n = 246) were used for model training and leave-one-site-out cross-validation. The remaining 88 patients with nontransition served as the validation of model specificity. Three hundred thirty-four healthy volunteers provided a normative sample for prognostic signature evaluation. Three independent Swiss projects contributed a further 45 cases with psychosis transition and 600 with nontransition for the external validation of clinical-neurocognitive, sMRI-based, and combined models. Data were analyzed from January 1, 2019, to March 31, 2020. Main Outcomes and Measures Accuracy and generalizability of prognostic systems. Results A total of 668 individuals (334 patients and 334 controls) were included in the analysis (mean [SD] age, 25.1 [5.8] years; 354 [53.0%] female and 314 [47.0%] male). Clinicians attained a balanced accuracy of 73.2% by effectively ruling out (specificity, 84.9%) but ineffectively ruling in (sensitivity, 61.5%) psychosis transition. In contrast, algorithms showed high sensitivity (76.0%-88.0%) but low specificity (53.5%-66.8%). A cybernetic risk calculator combining all algorithmic and human components predicted psychosis with a balanced accuracy of 85.5% (sensitivity, 84.6%; specificity, 86.4%). In comparison, an optimal prognostic workflow produced a balanced accuracy of 85.9% (sensitivity, 84.6%; specificity, 87.3%) at a much lower diagnostic burden by sequentially integrating clinical-neurocognitive, expert-based, PRS-based, and sMRI-based risk estimates as needed for the given patient. Findings were supported by good external validation results. Conclusions and RelevanceThese findings suggest that psychosis transition can be predicted in a broader risk spectrum by sequentially integrating algorithms' and clinicians' risk estimates. For clinical translation, the proposed workflow should undergo large-scale international validation.Question Can a transition to psychosis be predicted in patients with clinical high-risk states or recent-onset depression by optimally integrating clinical, neurocognitive, neuroimaging, and genetic information with clinicians' prognostic estimates? Findings In this prognostic study of 334 patients and 334 control individuals, machine learning models sequentially combining clinical and biological data with clinicians' estimates correctly predicted disease transitions in 85.9% of cases across geographically distinct patient populations. The clinicians' lack of prognostic sensitivity, as measured by a false-negative rate of 38.5%, was reduced to 15.4% by the sequential prognostic model. Meaning These findings suggest that an individualized prognostic workflow integrating artificial and human intelligence may facilitate the personalized prevention of psychosis in young patients with clinical high-risk syndromes or recent-onset depression.</p

    Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods

    No full text
    We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T 2â€Č times and a site-specific comparison of T 2â€Č at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96 %.ISSN:0925-2738ISSN:1573-500

    Dynamic Nuclear Polarization of <sup>1</sup>H, <sup>13</sup>C, and <sup>59</sup>Co in a Tris(ethylenediamine)cobalt(III) Crystalline Lattice Doped with Cr(III)

    No full text
    The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co­(en)<sub>3</sub>Cl<sub>3</sub>]<sub>2</sub>·NaCl·6H<sub>2</sub>O (en = ethylenediamine, C<sub>2</sub>H<sub>8</sub>N<sub>2</sub>) doped with Cr­(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that <sup>1</sup>H, <sup>13</sup>C, and <sup>59</sup>Co can be polarized by irradiation of Cr­(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr­(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins

    Dimer Organization of Membrane-Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive H-1-Detected Solid-State NMR

    No full text
    The Hepatitis C virus nonstructural protein 5A (NS5A) is a membrane-associated protein involved in multiple steps of the viral life cycle. Direct-acting antivirals (DAAs) targeting NS5A are a cornerstone of antiviral therapy, but the mode-of-action of these drugs is poorly understood. This is due to the lack of information on the membrane-bound NS5A structure. Herein, we present the structural model of an NS5A AH-linker-D1 protein reconstituted as proteoliposomes. We use highly sensitive proton-detected solid-state NMR methods suitable to study samples generated through synthetic biology approaches. Spectra analyses disclose that both the AH membrane anchor and the linker are highly flexible. Paramagnetic relaxation enhancements (PRE) reveal that the dimer organization in lipids requires a new type of NS5A self-interaction not reflected in previous crystal structures. In conclusion, we provide the first characterization of NS5A AH-linker-D1 in a lipidic environment shedding light onto the mode-of-action of clinically used NS5A inhibitors.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    Dimer Organization of Membrane‐Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive 1

    No full text
    The Hepatitis C virus nonstructural protein 5A (NS5A) is a membrane-associated protein involved in multiple steps of the viral life cycle. Direct-acting antivirals (DAAs) targeting NS5A are a cornerstone of antiviral therapy, but the mode-of-action of these drugs is poorly understood. This is due to the lack of information on the membrane-bound NS5A structure. Herein, we present the structural model of an NS5A AH-linker-D1 protein reconstituted as proteoliposomes. We use highly sensitive proton-detected solid-state NMR methods suitable to study samples generated through synthetic biology approaches. Spectra analyses disclose that both the AH membrane anchor and the linker are highly flexible. Paramagnetic relaxation enhancements (PRE) reveal that the dimer organization in lipids requires a new type of NS5A self-interaction not reflected in previous crystal structures. In conclusion, we provide the first characterization of NS5A AH-linker-D1 in a lipidic environment shedding light onto the mode-of-action of clinically used NS5A inhibitors.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    Protein NMR Spectroscopy at 150 kHz Magic‐Angle Spinning Continues To Improve Resolution and Mass Sensitivity

    No full text
    Spectral resolution is the key to unleashing the structural and dynamic information contained in NMR spectra. Fast magic‐angle spinning (MAS) has recently revolutionized the spectroscopy of biomolecular solids. Herein, we report a further remarkable improvement in the resolution of the spectra of four fully protonated proteins and a small drug molecule by pushing the MAS rotation frequency higher (150 kHz) than the more routinely used 100 kHz. We observed a reduction in the average homogeneous linewidth by a factor of 1.5 and a decrease in the observed linewidth by a factor 1.25. We conclude that even faster MAS is highly attractive and increases mass sensitivity at a moderate price in overall sensitivity.ISSN:1439-4227ISSN:1439-763

    Protein NMR Spectroscopy at 150 kHz Magic‐Angle Spinning Continues To Improve Resolution and Mass Sensitivity

    No full text
    Spectral resolution is the key to unleashing the structural and dynamic information contained in NMR spectra. Fast magic‐angle spinning (MAS) has recently revolutionized the spectroscopy of biomolecular solids. Herein, we report a further remarkable improvement in the resolution of the spectra of four fully protonated proteins and a small drug molecule by pushing the MAS rotation frequency higher (150 kHz) than the more routinely used 100 kHz. We observed a reduction in the average homogeneous linewidth by a factor of 1.5 and a decrease in the observed linewidth by a factor 1.25. We conclude that even faster MAS is highly attractive and increases mass sensitivity at a moderate price in overall sensitivity.ISSN:1439-4227ISSN:1439-763
    corecore