13 research outputs found

    Non-invasive Focal Mechanical Vibrations Delivered by Wearable Devices: An Open-Label Pilot Study in Childhood Ataxia

    Get PDF
    Non-invasive focal mechanical vibrations (NIFMV) now represent a strategy of increasing interest to improve motor control in different neurological diseases. Nanotechnology allowed the creation of wearable devices transforming thermal variations into mechanical energy with focal vibrations. This kind of wearable stimulators (WS) has produced encouraging preliminary results when used in the treatment of movement disorders and ataxia in adults. In this open label pilot study we first evaluated the feasibility, safety and effectiveness of NIFMV by WS in a cohort of 10 patients with childhood ataxia, a phenomenological category including different conditions still lacking of effective symptomatic therapies. Through the assessment of both clinical rating scales and spatio-temporal gait parameters via standardized gait analysis, we observed that a 4 weeks long treatment with WS Equistasi® was safe and provided significantly different effects in stride features of patients with slow/non-progressive cerebellar ataxia and Friedreich's Ataxia. Although limited by the sample size, the absence of a placebo-controlled group, the poor compliance of enrolled population to the original experimental design and the partial accuracy of outcome measures in pediatric subjects, we suggest that NIFMV by WS could support locomotion of patients with childhood slow/non-progressive cerebellar ataxia with preserved sensory system and no signs of peripheral neuropathy. Future studies are definitely necessary to confirm these preliminary results and define criteria for successful NIFMV-based treatmen

    Development of a Dynamic Oriented Rehabilitative Integrated System (DORIS) and Preliminary Tests

    No full text
    Moving platforms were introduced in the field of the study of posturography since the 1970s. Commercial platforms have some limits: a limited number of degrees of freedom, pre-configured protocols, and, usually, they are expensive. In order to overcome these limits, we developed a robotic platform: Dynamic Oriented Rehabilitative Integrated System (DORIS). We aimed at realizing a versatile solution that can be applied both for research purposes but also for personalizing the training of equilibrium and gait. We reached these goals by means of a Stewart platform that was realized with linear actuators and a supporting plate. Each actuator is provided by an ad hoc built monoaxial load cell. Position control allows a large range of movements and load cells measure the reactive force applied by the subject. Transmission Control Protocol/Internet Protocol (TCP/IP) guarantees the communication between the platform and other systems. We integrated DORIS with a motion analysis system, an electromyography (EMG) system, and a virtual reality environment (VR). This integration and the custom design of the platform offer the opportunity to manipulate the available information of the subject under analysis, which uses visual, vestibular, and plantar feet pressure inputs. The full access to the human movements and to the dynamic interaction is a further benefit for the identification of innovative solutions for research and physical rehabilitation purposes in a field that is widely investigated but still open

    Effect of position- and velocity-dependent forces on reaching movements at different speeds

    No full text
    The speed of voluntary movements is determined by the conflicting needs of maximizing accuracy and minimizing mechanical effort. Dynamic perturbations, e.g., force fields, may be used to manipulate movements in order to investigate these mechanisms. Here, we focus on how the presence of position- and velocity-dependent force fields affects the relation between speed and accuracy during hand reaching movements. Participants were instructed to perform reaching movements under visual control in two directions, corresponding to either low or high arm inertia. The subjects were required to maintain four different movement durations (very slow, slow, fast, very fast). The experimental protocol included three phases: (i) familiarization\u2014the robot generated no force; (ii) force field\u2014the robot generated a force; and (iii) after-effect\u2014again, no force. Participants were randomly assigned to four groups, depending on the type of force that was applied during the \u201cforce field\u201d phase. The robot was programmed to generate position-dependent forces\u2014with positive (K+) or negative stiffness (K 12)\u2014or velocity-dependent forces, with either positive (B+) or negative viscosity (B 12). We focused on path curvature, smoothness, and endpoint error; in the latter we distinguished between bias and variability components. Movements in the high-inertia direction are smoother and less curved; smoothness also increases with movement speed. Endpoint bias and variability are greater in, respectively, the high and low inertia directions. A robust dependence on movement speed was only observed in the longitudinal components of both bias and variability. The strongest and more consistent effects of perturbation were observed with negative viscosity (B 12), which resulted in increased variability during force field adaptation and in a reduction of the endpoint bias, which was retained in the subsequent after-effect phase. These findings confirm that training with negative viscosity produces lasting effects in movement accuracy at all speeds

    Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level

    Get PDF
    Computational models of neuromotor recovery after a stroke might help to unveil the underlying physiological mechanisms and might suggest how to make recovery faster and more effective. At least in principle, these models could serve: (i) To provide testable hypotheses on the nature of recovery; (ii) To predict the recovery of individual patients; (iii) To design patient-specific "optimal" therapy, by setting the treatment variables for maximizing the amount of recovery or for achieving a better generalization of the learned abilities across different tasks. Here we review the state of the art of computational models for neuromotor recovery through exercise, and their implications for treatment. We show that to properly account for the computational mechanisms of neuromotor recovery, multiple levels of description need to be taken into account. The review specifically covers models of recovery at central, functional and muscle synergy level

    Concurrent adaptation to force fields and visual rotations

    No full text
    Abstract-An important issue in sensorimotor adaptation is what drives adaptation, and whether different types of perturbations are mediated by different adaptation mechanisms. Here we assess whether any interference is observed among the joint adaptation to visual (i.e. kinematic) and force (i.e. dynamic) perturbations. Subjects adapted their reaching movements to rotations of the display. During adaptation, we perturbed their movements with a rotational force field, whose direction was either the same or the opposite of the visual perturbation (R+F and R-F groups). In the two groups, we compared the outcomes of both adaptation modalities. In addition, we analyzed the dynamics of the adaptation processes in terms of a number of linear dynamical models, based on different assumptions. We conclude that the two adaptation processes occur largely in parallel, with little interaction, and exhibit similar time constants, which suggests common underlying memory mechanisms. In addition, we found that subjects in the R+F group exhibit a significantly smaller hand compliance, which suggests that the different combinations of disturbances affect the regulation of arm impedance

    Modulation of motor performance by a monetary incentive: A pilot study

    No full text
    It is commonly acknowledged that movement performance is determined by a trade-off between accuracy requirements and energetic expenditure. However, their relative weights are subjective and depend on the perceived benefit (or cost) associated to successful movement completion. A deeper knowledge on how this trade-off affects motor behavior may suggest ways to manipulate it in pathologies, like Parkinson's disease, in which the mechanisms underlying the selection of motor response are believed to be defective. In this preliminary study, we associate a monetary incentive to successful completion of a full-body reaching task and look at the determinants of motor performance. Our preliminary results suggest that motor performance (measured as the absolute average acceleration of hand movements) increases with movement amplitude/target elevation. Overall, performance also increases with the amount of monetary incentive and with the average reward experienced in previous trials. In addition, subjects with a greater sensitivity to incentive exhibit a low sensitivity to the average reward. In contrast, subjects with a negative sensitivity to incentive exhibit a smaller sensitivity to the average reward. These results suggest that motor performance has a complex relation with its perceived benefits, and this relation is probably subject-dependent

    Natural interfaces and virtual environments for the acquisition of street crossing and path following skills in adults with Autism Spectrum Disorders: A feasibility study

    Get PDF
    BACKGROUND: Lack of social skills and/or a reduced ability to determine when to use them are common symptoms of Autism Spectrum Disorder (ASD). Here we examine whether an integrated approach based on virtual environments and natural interfaces is effective in teaching safety skills in adults with ASD. We specifically focus on pedestrian skills, namely street crossing with or without traffic lights, and following road signs. METHODS: Seven adults with ASD explored a virtual environment (VE) representing a city (buildings, sidewalks, streets, squares), which was continuously displayed on a wide screen. A markerless motion capture device recorded the subjects' movements, which were translated into control commands for the VE according to a predefined vocabulary of gestures. The treatment protocol consisted of ten 45-minutes sessions (1 session/week). During a familiarization phase, the participants practiced the vocabulary of gestures. In a subsequent training phase, participants had to follow road signs (to either a police station or a pharmacy) and to cross streets with and without traffic lights. We assessed the performance in both street crossing (number and type of errors) and navigation (walking speed, path length and ability to turn without stopping). To assess their understanding of the practiced skill, before and after treatment subjects had to answer a test questionnaire. To assess transfer of the learned skill to real-life situations, another specific questionnaire was separately administered to both parents/legal guardians and the subjects' personal caregivers. RESULTS: One subject did not complete the familiarization phase because of problems with depth perception. The six subjects who completed the protocol easily learned the simple body gestures required to interact with the VE. Over sessions they significantly improved their navigation performance, but did not significantly reduce the errors made in street crossing. In the test questionnaire they exhibited no significant reduction in the number of errors. However, both parents and caregivers reported a significant improvement in the subjects' street crossing performance. Their answers were also highly consistent, thus pointing at a significant transfer to real-life behaviors. CONCLUSIONS: Rehabilitation of adults with ASD mainly focuses on educational interventions that have an impact in their quality of life, which includes safety skills. Our results confirm that interaction with VEs may be effective in facilitating the acquisition of these skills

    Upper Body Physical Rehabilitation for Children with Ataxia through IMU-Based Exergame

    No full text
    Background: Children with ataxia experience balance and movement coordination difficulties and needs intensive physical intervention to maintain functional abilities and counteract the disorder. Exergaming represents a valuable strategy to provide engaging physical intervention to children with ataxia, sustaining their motivation to perform the intervention. This paper aims to describe the effect of a home-conducted exergame-based exercise training for upper body movements control of children with ataxia on their ataxic symptoms, walking ability, and hand dexterity. Methods: Eighteen children with ataxia were randomly divided into intervention and control groups. Participants in the intervention group were asked to follow a 12-week motor activity program at home using the Niurion® exergame. Blind assessments of participants’ ataxic symptoms, dominant and non-dominant hand dexterity, and walking ability were conducted. Results: On average, the participants performed the intervention for 61.5% of the expected time. At the end of the training, participants in the intervention group showed improved hand dexterity that worsened in the control group. Conclusion: The presented exergame enhanced the participants’ hand dexterity. However, there is a need for exergames capable of maintaining a high level of players’ motivation in playing. It is advisable to plan a mixed intervention to take care of the multiple aspects of the disorder

    Quantitative Analysis of Bradykinesia and Rigidity in Parkinson’s Disease

    No full text
    BackgroundIn the last decades, several studies showed that wearable sensors, used for assessing Parkinson’s disease (PD) motor symptoms and recording their fluctuations, could provide a quantitative and reliable tool for patient’s motor performance monitoring.ObjectiveThe aim of this study is to make a step forward the capability of quantitatively describing PD motor symptoms. The specific aims are: identify the most sensible place where to locate sensors to monitor PD bradykinesia and rigidity, and identify objective indexes able to discriminate PD OFF/ON motor status, and PD patients from healthy subjects (HSs).MethodsFourteen PD patients (H&Y stage 1–2.5), and 13 age-matched HSs, were enrolled. Five magneto-inertial wearable sensors, placed on index finger, thumb, metacarpus, wrist, and arm, were used as motion tracking systems. Sensors were placed on the most affected arm of PD patients, and on dominant hand of HS. Three UPDRS part III tasks were evaluated: rigidity (task 22), finger tapping (task 23), and prono-supination movements of the hands (task 25). A movement disorders expert rated the three tasks according to the UPDRS part III scoring system. In order to describe each task, different kinematic indexes from sensors were extracted and analyzed.ResultsFour kinematic indexes were extracted: fatigability; total time; total power; smoothness. The last three well-described PD OFF/ON motor status, during finger-tapping task, with an index finger sensor. During prono-supination task, wrist sensor was able to differentiate PD OFF/ON motor condition. Smoothness index, used as a rigidity descriptor, provided a good discrimination of the PD OFF/ON motor status. Total power index, showed the best accuracy for PD vs healthy discrimination, with any sensor location among index finger, thumb, metacarpus, and wrist.ConclusionThe present study shows that, in order to better describe the kinematic features of Parkinsonian movements, wearable sensors should be placed on a distal location on upper limb, on index finger or wrist. The proposed indexes demonstrated a good correlation with clinical scores, thus providing a quantitative tool for research purposes in future studies in this field
    corecore