34 research outputs found

    Analysis of chattering phenomenon in industrial S6-high rolling mill

    Get PDF
    Chatter in rolling mills is the undesirable vibration observed in most of the rolling mills operating at high speed and rolling thin strip. In this work the authors discuss some problems relative to the vibrations occurring in a S6-high cold rolling mill. It can result in not good surface finish for some applications and, rare cases, in gauge variations in the rolled strip and it is considered to be the result of interaction between rolling mill structure and rolling-process. Three basic types of chatter can be classified in rolling mills: torsional, third-octave mode, and fifth-octave-mode chatter. S6-high rolling mill is an innovative mode to work the steel: it allows the use of very small work rolls laterally guided by individually adjustable side support rolls, which are supported by two rows of roller bearings mounted in cassettes. It has six rolls able to roll steel strip coming directly from hot rolling mill train. A proposed solution based on empirical observations, vibration analysis and considerations of a model is described with the aim to improve the quality of the product and increasing production

    Design and preliminary validation of a tool for the simulation of train braking performance

    Get PDF
    Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train's subsystems. This paper presents a modular tool for the prediction of train braking performance, with a particular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety requirements prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experimental data, considering as benchmark case an Ansaldo EMU V250 train—a European high-speed train—currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were available. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results
    corecore