412 research outputs found

    Acupuncture Transmitted Infections

    Get PDF
    published_or_final_versio

    CoVDB: a comprehensive database for comparative analysis of coronavirus genes and genomes

    Get PDF
    The recent SARS epidemic has boosted interest in the discovery of novel human and animal coronaviruses. By July 2007, more than 3000 coronavirus sequence records, including 264 complete genomes, are available in GenBank. The number of coronavirus species with complete genomes available has increased from 9 in 2003 to 25 in 2007, of which six, including coronavirus HKU1, bat SARS coronavirus, group 1 bat coronavirus HKU2, groups 2c and 2d coronaviruses, were sequenced by our laboratory. To overcome the problems we encountered in the existing databases during comparative sequence analysis, we built a comprehensive database, CoVDB (http://covdb.microbiology.hku.hk), of annotated coronavirus genes and genomes. CoVDB provides a convenient platform for rapid and accurate batch sequence retrieval, the cornerstone and bottleneck for comparative gene or genome analysis. Sequences can be directly downloaded from the website in FASTA format. CoVDB also provides detailed annotation of all coronavirus sequences using a standardized nomenclature system, and overcomes the problems of duplicated and identical sequences in other databases. For complete genomes, a single representative sequence for each species is available for comparative analysis such as phylogenetic studies. With the annotated sequences in CoVDB, more specific blast search results can be generated for efficient downstream analysis

    Coronavirus Genomics and Bioinformatics Analysis

    Get PDF
    The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb) among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid) and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999–2002, with estimated substitution rate of 4×10−4 to 2×10−2 substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV), between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV) type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1). Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses

    General metabolism of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of <it>L. hongkongensis </it>and correlated them with its phenotypic characteristics.</p> <p>Results</p> <p>The <it>L. hongkongensis </it>genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and β-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in <it>Neisseria gonorrhoeae</it>, <it>Neisseria meningitidis </it>and <it>Chromobacterium violaceum</it>. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.</p

    More and More Coronaviruses: Human Coronavirus HKU1

    Get PDF
    After human coronaviruses OC43, 229E and NL63, human coronavirus HKU1 (HCoV-HKU1) is the fourth human coronavirus discovered. HCoV-HKU1 is a group 2a coronavirus that is still not cultivable. The G + C contents of HCoV-HKU1 genomes are 32%, the lowest among all known coronaviruses with complete genome sequences available. Among all coronaviruses, HCoV-HKU1 shows the most extreme codon usage bias, attributed most importantly to severe cytosine deamination. All HCoV-HKU1 genomes contain unique tandem copies of a 30-base acidic tandem repeat of unknown function at the N-terminus of nsp3 inside the acidic domain upstream of papain-like protease 1. Three genotypes, A, B and C, of HCoV-HKU1 and homologous recombination among their genomes, are observed. The incidence of HCoV-HKU1 infections is the highest in winter. Similar to other human coronaviruses, HCoV-HKU1 infections have been reported globally, with a median (range) incidence of 0.9 (0 – 4.4) %. HCoV-HKU1 is associated with both upper and lower respiratory tract infections that are mostly self-limiting. The most common method for diagnosing HCoV-HKU1 infection is RT-PCR or real-time RT-PCR using RNA extracted from respiratory tract samples such as nasopharyngeal aspirates (NPA). Both the pol and nucleocapsid genes have been used as the targets for amplification. Monoclonal antibodies have been generated for direct antigen detection in NPA. For antibody detection, Escherichia coli BL21 and baculovirus-expressed recombinant nucleocapsid of HCoV-HKU1 have been used for IgG and IgM detection in sera of patients and normal individuals, using Western blot and enzyme-linked immunoassay

    An Alu Element–Associated Hypermethylation Variant of the POMC Gene Is Associated with Childhood Obesity

    Get PDF
    The individual risk for common diseases not only depends on genetic but also on epigenetic polymorphisms. To assess the role of epigenetic variations in the individual risk for obesity, we have determined the methylation status of two CpG islands at the POMC locus in obese and normal-weight children. We found a hypermethylation variant targeting individual CpGs at the intron2–exon3 boundary of the POMC gene by bisulphite sequencing that was significantly associated with obesity. POMC exon3 hypermethylation interferes with binding of the transcription enhancer P300 and reduces expression of the POMC transcript. Since intron2 contains Alu elements that are known to influence methylation in their genomic vicinity, the exon3 methylation variant seems to result from an Alu element–triggered default state of methylation boundary definition. Exon3 hypermethylation in the POMC locus represents the first identified DNA methylation variant that is associated with the individual risk for obesity

    Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of <it>L. hongkongensis</it>, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances.</p> <p>Results</p> <p>A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the <it>L. hongkongensis </it>genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. <it>L. hongkongensis </it>is unique among closely related members of <it>Neisseriaceae </it>family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C<sup><sub>4</sub></sup>-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the <it>L. hongkongensis </it>genome also contained two copies of <it>qseB/qseC </it>homologues of the AI-3 quorum sensing system.</p> <p>Conclusions</p> <p>The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to adapt to different environments. Structural modeling will provide useful insights on the transporters in <it>L. hongkongensis</it>.</p

    Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.</p> <p>Results</p> <p>For acid and bile resistance, <it>L. hongkongensis </it>possessed a urease gene cassette, two <it>arc </it>gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent <it>Escherichia coli </it>(<it>E. coli</it>) and enterotoxigenic <it>E. coli</it>. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as <it>E. coli</it>, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.</p
    corecore