40 research outputs found

    Development and field assessment of a quantitative PCR for the detection and enumeration of the noxious bloom-former Anabaena planktonica

    Get PDF
    Anabaena planktonica is a harmful, bloom-forming freshwater cyanobacterium, which has arrived recently in New Zealand. In the short time since its incursion (<10 yr), A. planktonica has spread rapidly throughout lakes in the North Island. To date, the identification and enumeration of A. planktonica has been undertaken using light microscopy. There is an urgent demand for a highly sensitive and specific quantitative detection method that can be combined with a high sample processing capability in order to increase sampling frequency. In this study, we sequenced 36 cyanobacterial 16S rRNA genes (partial), complete intergenic transcribed spacers (ITS), and 23S rRNA genes (partial) of fresh-water cyanobacteria found in New Zealand. The sequences were used to develop an A. Planktonica specific TaqMan QPCR assay targeting the long ITS1-L and the 5´ terminus of the 23S rRNA gene. The QPCR method was linear (R2 = 0.999) over seven orders of magnitude with a lower end sensitivity of approximately five A. planktonica cells in the presence of exogenous DNA. The quantitative PCR (QPCR) method was used to assess the spatial distribution and seasonal population dynamics of A. planktonica from the Lower Karori Reservoir (Wellington, New Zealand) over a five-month period. The QPCR results were compared directly to microscopic cell counts and found to correlate significantly (95% confidence level) under both bloom and non-bloom conditions. The current QPCR assay will be an invaluable tool for routine monitoring programs and in research investigating environmental factors that regulate the population dynamics and the blooming of A. planktonica

    No evidence for a culturable bacterial tetrodotoxin producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchidae) and Stylochoplana sp. (Platyhelminthes: Polycladida)

    Get PDF
    Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine biota, but at lower than expected concentrations. In this study, 102 strains were isolated from Pleurobranchaea maculata (Opisthobranchia) and Stylochoplana sp. (Platyhelminthes). Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect the C9 base of TTX via liquid chromatography—mass spectrometry. Bacterial strains were characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the possibility that TTX is produced by a consortium of bacteria, a series of experiments using marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting of bacterial communities from broth experiments showed little change over the first four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0), suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp. is unlikely

    Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study

    Get PDF
    An experimental protocol using mesocosms was established to study the effect of Microcystis sp. cell abundance on microcystin production. The mesocosms (55 L) were set up in a shallow eutrophic lake and received either no (control), low (to simulate a moderate surface accumulation), or high (to simulate a dense surface scum) concentrations of Microcystis sp. cells collected from the lake water adjacent to the mesocosms. In the low- and high-cell addition mesocosms (2 replicates of each), the initial addition of Microcystis sp. cells doubled the starting cell abundance from 500 000 to 1 000 000 cells mL⁻¹, but there was no detectable effect on microcystin quotas. Two further cell additions were made to the high-cell addition mesocosms after 60 and 120 min, increasing densities to 2 900 000 and 7 000 000 cells mL-1, respectively. Both additions resulted in marked increases in microcystin quotas from 0.1 pg cell-1 to 0.60 and 1.38 pg cell⁻¹, respectively, over the 240 min period. Extracellular microcystins accounted for <12% of the total microcystin load throughout the whole experiment. The results of this study indicate a relationship between Microcystis cell abundance and/or mutually correlated environmental parameters and microcystin synthesis

    Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses

    Get PDF
    Cyanobacterial blooms are becoming increasingly prevalent worldwide. Sparse historic phytoplankton records often result in uncertainty as to whether bloom-forming species have always been present and are proliferating in response to eutrophication or climate change, or if there has been a succession of new arrivals through recent history. This study evaluated the relative efficacies of germination experiments and automated rRNA intergenic spacer analysis (ARISA) assays in identifying cyanobacteria in a sediment core and thus reconstructing the historical composition of cyanobacterial communities. A core (360 mm in depth) was taken in the central, undisturbed basin of Lake Okaro, New Zealand, a lake with a rapid advance of eutrophication and increasing cyanobacteria populations. The core incorporated a tephra from an 1886 volcanic eruption that served to delineate recent sediment deposition. ARISA and germination experiments successfully detected akinete-forming nostocaleans in sediment dating 120 bp and showed little change in Nostocales species structure over this time scale. Species that had not previously been documented in the lake were identified including Aphanizomenon issatschenkoi, a potent anatoxin-a producer. The historic composition of Chrococcales and Oscillatoriales was more difficult to reconstruct, potentially due to the relatively rapid degradation of vegetative cells within sediment

    Investigating diet as the source of tetrodotoxin in Pleurobranchaea maculata

    Get PDF
    The origin of tetrodotoxin (TTX) is highly debated; researchers have postulated either an endogenous or exogenous source with the host accumulating TTX symbiotically or via food chain transmission. The aim of this study was to determine whether the grey side-gilled sea slug (Pleurobranchaea maculata) could obtain TTX from a dietary source, and to attempt to identify this source through environmental surveys. Eighteen non-toxic P. maculata were maintained in aquariums and twelve were fed a TTX-containing diet. Three P. maculata were harvested after 1 h, 24 h, 17 days and 39 days and TTX concentrations in their stomach, gonad, mantle and remaining tissue/fluids determined using liquid chromatography-mass spectrometry. Tetrodotoxin was detected in all organs/tissue after 1 h with an average uptake of 32%. This decreased throughout the experiment (21%, 15% and 9%, respectively). Benthic surveys at sites with dense populations of toxic P. maculata detected very low or no TTX in other organisms. This study demonstrates that P. maculata can accumulate TTX through their diet. However, based on the absence of an identifiable TTX source in the environment, in concert with the extremely high TTX concentrations and short life spans of P. maculata, it is unlikely to be the sole TTX source for this species

    Tetrodotoxin Concentrations in Pleurobranchaea maculata: Temporal, Spatial and Individual Variability from New Zealand Populations

    Get PDF
    Tetrodotoxin (TTX) is a potent neurotoxin that has been identified in a range of phylogenetically unrelated marine and terrestrial organisms. Tetrodotoxin was recently detected in New Zealand in Pleurobranchaea maculata (the grey side-gilled sea slug). From June 2010 to June 2011 wild specimens were collected from 10 locations around New Zealand. At one site (Narrow Neck Beach, Auckland) up to 10 individuals were collected monthly for 6 months. Attempts were also made to rear P. maculata in captivity. Tetrodotoxin was detected in samples from eight of the ten sites. The highest average (368.7 mg kg−1) and maximum (1414.0 mg kg−1) concentrations were measured in samples from Illiomama Rock (Auckland). Of the toxic populations tested there was significant variability in TTX concentrations among individuals, with the highest difference (62 fold) measured at Illiomama Rock. Tetrodotoxin concentrations in samples from Narrow Neck Beach varied temporally, ranging from an average of 184 mg kg−1 in June 2010 to 17.5 mg kg−1 by December 2010. There was no correlation between TTX levels and mass. The highest levels correspond with the egg laying season (June–August) and this, in concert with the detection of high levels of TTX in eggs and early larval stages, suggests that TTX may have a defensive function in P. maculata. Only one larva was successfully reared to full maturation and no TTX was detected

    Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study

    Get PDF
    An experimental protocol using mesocosms was established to study the effect of Microcystis sp. cell abundance on microcystin production. The mesocosms (55 L) were set up in a shallow eutrophic lake and received either no (control), low (to simulate a moderate surface accumulation), or high (to simulate a dense surface scum) concentrations of Microcystis sp. cells collected from the lake water adjacent to the mesocosms. In the low- and high-cell addition mesocosms (2 replicates of each), the initial addition of Microcystis sp. cells doubled the starting cell abundance from 500 000 to 1 000 000 cells mL-1, but there was no detectable effect on microcystin quotas. Two further cell additions were made to the high-cell addition mesocosms after 60 and 120 min, increasing densities to 2 900 000 and 7 000 000 cells mL-1, respectively. Both additions resulted in marked increases in microcystin quotas from 0.1 pg cell-1 to 0.60 and 1.38 pg cell-1, respectively, over the 240 min period. Extracellular microcystins accounted for &lt;12% of the total microcystin load throughout the whole experiment. The results of this study indicate a relationship between Microcystis cell abundance and/or mutually correlated environmental parameters and microcystin synthesis

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Development of a real-time PCR assay for the detection of the invasive clam, Corbula amurensis, in environmental samples

    No full text
    The detection of invasive species soon after an incursion, when the population is confined to a small area and at a low density, maximizes the probability of successful eradication. In response a number of sensitive molecular methods have been developed for identifying the larvae of marine invertebrate pests at extremely low concentrations. In this study we developed a highly sensitive real-time PCR assay targeting the 18S ribosomal DNA for the rapid and accurate identification of the Asian clam Corbula amurensis in environmental samples. Larvae of C. amurensis were spiked into commonly encountered sampling matrices including benthic assemblages, biofilms, sediment grabs and plankton net hauls, and the sensitivity of the assay was assessed. In this study the assay reliably detected one larva in up to 10 g of sediment, and five larvae in 10 g of benthic invertebrate and macro-algal assemblages. Seawater and benthic assemblage samples were collected from four major ports around New Zealand and all were negative for C. amurensis using the real-time PCR assay. This assay has the potential to enhance current surveillance methods, especially regarding morphologically difficult to identify early life-stages. Real-time PCR can be used with high through-put platforms and is extremely sensitive, increasing detection potential during initial stages of incursions
    corecore